
[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Lars Wirzenius
(liw@liw.fi)

Backups with Obnam

Obnam Version - 1.19
Version - 2016.620

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Contents

Page

1 Introduction 5
This manual 5

2 README FIRST: A quick
tour of Obnam 7
Configuration 7
Initial backup 8
Incremental backups 8
Multiple clients in one repos-

itory 8
Removing old generations . 8
Restoring data 8
Using encryption 9

3 You know you should 10
Why backup? 10
Backup concepts 10
Backup strategies 12
Backups and security 13
Backup storage media con-

siderations 14

4 Installing Obnam 16
Debian 16
Other systems 16

5 Backing up 17
Your first backup 17
Your second backup 18
Choosing what to backup,

and what not to backup 18
Storing backups remotely . 19
URL syntax 20
Pull backups 21
Configuration files: a quick

intro 21
When your precious data is

very large 22
De-duplication 23

De-duplication and safety
against checksum colli-
sions 24

Locking 25
Consistency of live data . . 26

6 Restoring from backups 27
Oh no! It’s all FUSEd together 27
Restoring without FUSE . . 28
An actual example of a

restoration 29
Practice makes restores pain-

less 29

7 Forgetting old backup gen-
erations 30
Choosing a schedule for for-

getting generations . . 31

8 Verifying backups 32

9 Sharing a repository be-
tween multiple clients 34

10 Using encryption 36
You don’t admit to being a

spy, so isn’t encryption
unnecessary? 36

How Obnam encryption works 37
Setting up Obnam to use

encryption 38
Checking if a repository uses

encryption 39
Managing encryption keys in

a repository 39

11 Other stuff 40
k4dirstat cache files 40

2

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

12 Case studies 41

13 Troubleshooting 42
Turning on full logging . . . 42
Reporting problems ("bugs") 42

14 Obnam configuration files
and settings 44
Where is my configuration? 44
Configuration file syntax . . 45
Checking what my configura-

tion is 46
Finding out all the configura-

tion settings 46

15 The backup repository in-
ternals 47
Repository file permissions . 47

16 Obnam options 48
--version 48
-h 48
--help 48
--output=FILE 48
-r REPOSITORY 48
--repository=REPOSITORY 48
--client-name=CLIENT-

NAME 49
--trace=TRACE 49
--quiet 49
--no-quiet 49
--verbose 49
--no-verbose 49
--pretend 49
--dry-run 49
--no-act 49
--no-pretend 50
--no-dry-run 50
--no-no-act 50
--lock-timeout=TIMEOUT . 50
--compress-with=PROGRAM 50
--root=ROOT 50
--testing-fail-matching=REGEXP 50
--warn-age=AGE 50
--critical-age=AGE 50
--to=TO 50
--generation=GENERATION 50
--keep=KEEP 51
--verify-randomly=N 51

17 Backing up 52
--exclude=EXCLUDE . . . 52
--exclude-caches 52
--no-exclude-caches 52
--one-file-system 52
--no-one-file-system 52
--checkpoint=SIZE 52
--de-duplicate=MODE . . . 52
--leave-checkpoints 53
--no-leave-checkpoints . . . 53
--small-files-in-btree 53
--no-small-files-in-btree . . . 53

18 Encryption 54
--encrypt-with=ENCRYPT-

WITH 54
--keyid=KEYID 54
--weak-random 54
--no-weak-random 54
--symmetric-key-bits=SYMMETRIC-

KEY-BITS 54

19 Integrity checking (fsck) 55
--fsck-fix 55
--no-fsck-fix 55
--fsck-ignore-chunks 55
--no-fsck-ignore-chunks . . . 55
--fsck-ignore-client=NAME . 55
--fsck-last-generation-only . 55
--no-fsck-last-generation-only 55
--fsck-skip-generations . . . 55
--no-fsck-skip-generations . . 56
--fsck-skip-dirs 56
--no-fsck-skip-dirs 56
--fsck-skip-files 56
--no-fsck-skip-files 56
--fsck-skip-per-client-b-trees 56
--no-fsck-skip-per-client-b-

trees 56
--fsck-skip-shared-b-trees . . 56
--no-fsck-skip-shared-b-trees 56

20 Logging 57
--log=FILE 57
--log-level=LEVEL 57
--log-max=SIZE 57
--log-keep=N 57
--log-mode=MODE 57

3

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

21 Mounting with FUSE 58
--viewmode=MODE 58
--fuse-opt=FUSE 58

22 Performance 59
--dump-memory-profile=METHOD 59
--memory-dump-interval=SECONDS 59

23 Performance tweaking 60
--node-size=SIZE 60
--chunk-size=SIZE 60
--upload-queue-size=SIZE . 60
--lru-size=SIZE 60
--idpath-depth=IDPATH-

DEPTH 60
--idpath-bits=IDPATH-BITS 60
--idpath-skip=IDPATH-SKIP 60
--chunkids-per-group=NUM 61

24 SSH/SFTP 62
--ssh-key=FILENAME . . . 62
--strict-ssh-host-keys 62
--no-strict-ssh-host-keys . . 62
--ssh-known-hosts=FILENAME 62
--pure-paramiko 62
--no-pure-paramiko 62

25 Performance tuning 63
Introduction 63
Measurements 63
Discussion 65
Running Obnam under the

Python profiler 65

26 The inbuilt help 67
The help file 67

Options: 68
Backing up: 69
Configuration files and

settings: 70
Development of Obnam

itself: 70
Encryption: 70
Integrity checking (fsck): 71
Logging: 71
Mounting with FUSE: 71
Peformance: 71
Performance tweaking: 72
SSH/SFTP: 72

The ’man’ page 72
Making backups 74
Verifying backups . . . 75
URL syntax 75
Generation specifications 76
Policy for keeping

and removing
backup genera-
tions 76

Using encryption . . . 77
Configuration files . . . 77
Multiple clients and

locking 78
OPTIONS 78

Backing up 80
Configuration files and

settings 81
Development of Obnam

itself 81
Encryption 81
Integrity checking (fsck) 81
Logging 82
Mounting with FUSE . 82
Peformance 82
Performance tweaking 82
SSH/SFTP 83
EXIT STATUS 83
ENVIRONMENT . . . 84
FILES 84
EXAMPLE 84
SEE ALSO 85

27 Errors - code and names 86
By error code 86
By name 87

28 See Also 91

29 Legal stuff 92

30 Supporting Obnam develop-
ment 93

31 News 94

Glossary 118

Index of commands 120

General Index 123
4

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 1
Introduction

... backups? did someone talk about backups? I’m sure I heard someone
mention backups here somewhere. Backups! BACKUPS! BACKUPS ARE
AWESOME!

That’s a direct quote from my IRC history. I find backups quite interesting,
particularly from an implementation point of view, and I may sometimes obsess
about them a little bit. This is why I’ve written my own backup software. It’s
called Obnam. This is its manual.

I’m unusual: most people find backups boring at best, and tedious most of
the time. When I talk with people about backups, the usual reaction is "um,
I know I should". There are a lot of reasons for this. One is that backups are
a lot like insurance: you have to spend time, effort, and money up front to
have any use for them. Another is that the whole topic is scary: you have to
think about when things go wrong, and that puts people off. A third reason
is that while there are lots of backup tools and methods, it’s not always easy
to choose between them.

This manual is for the Obnam program, but it tries to be useful to everyone
thinking about backups.

This manual

This manual has been written in "LaTeX" to benefit from its superior markup
and features, for further information please see http://en.wikipedia.org/
wiki/LaTeX. It has almost the same layout as the "official" OBNAM manual at
http://obnam.org/ and uses the same sources. It is a "work-in-progress" and
is not complete, but still being added to.

This means that

is what you say to the programme

and

what the programme says to you
5

Version 2016.620– – Document LATEXed – 17th January 2016

http://en.wikipedia.org/wiki/LaTeX
http://en.wikipedia.org/wiki/LaTeX
http://obnam.org/

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THIS MANUAL

Sharon Kimble.
17th January 2016

6

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 2
README FIRST: A quick tour of
Obnam

You probably only need to read this chapter.

This chapter gives a quick introduction to the most important parts of
Obnam. The rest of the book is basically a verbose version of this chapter.
You should start by reading this chapter, then pretend you’ve read the rest,
and everyone will look at you in awe at cocktail parties. I promise, nobody
else will have read the rest of the book either, so there’s no risk of getting
caught.

Configuration

Obnam does not require a configuration file, and you can configure
everything using command line options. You can, however, use a
configuration file: save it as ‘∼/.obnam.conf‘ and make it have content like
this:

[config]
repository = sftp://your.server/home/youruser/backups/
log = /home/liw/obnam.log

The examples below assume you have created a configuration file, so that
options do not need to be repeated every time.

You probably want to enable the ‘log‘ setting, so that if there is a problem,
you can find out all the information available to fix it from the log file.

7

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

INITIAL BACKUP

Initial backup

Your first backup will be pretty big, and will take a long time. A long backup
may crash, but that is not a problem: Obnam makes a checkpoint1 every one
hundred megabytes or so.

obnam backup $HOME

Incremental backups

When you’ve made your initial, full backup (possibly in stages), you can
back up any changes simply by running Obnam again:

obnam backup $HOME

This will back up all new files, and any changed files. It will also record
which files have been deleted since the previous backup.

You can run Obnam as often as you like. Only the changes from the previous
run are backed up.

Multiple clients in one repository

You can backup multiple clients to a single repository by providing the
option --client-name=<identifier> when running the program. Backup sets
will be kept separate, but data de-duplication will happen across all the sets.

Removing old generations

Eventually your backup repository will grow so big you’ll want to remove
some old generations. The Obnam operation is called forget:

obnam forget --keep=30d

This would keep one backup from each of the last thirty calendar days,
counting from the newest backup (not current time). If you’ve backed up
several times during a day, only the latest generation from that day is kept.

Any data that is part of a generation that is to be kept will remain in the
repository. Any data that exists only in those generations that is to be
forgotten gets removed.

Restoring data

You will hopefully never need this, but the whole point of having backups
is to restore data in case of a disaster.

obnam restore --to=/var/tmp/my-recovery $HOME

1Not yet defined
8

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

USING ENCRYPTION

The above command will restore your entire home directory to
‘/var/tmp/my-recovery‘, from the latest backup generation. If you only
need some particular directory or file, you can specify that instead:

obnam restore --to=/var/tmp/my-recover $HOME/Archive/receipts

If you can’t remember the name of the file you need, use ‘obnam ls‘:

obnam ls > /var/tmp/my-recovery.list

This will output the contents of the backup generation, in a format similar
to ‘ls -lAR‘. Save it into a file and browse that. (It’s a fairly slow command,
so it’s comfortable to save to a file.)

See also An actual example of a restoration.

Using encryption

Obnam can use the GnuPG program to encrypt the backup. To enable this,
you need to have or create a PGP key, and then configure Obnam to use it:

[config]
encrypt-with = CAFEBABE

Here, ‘CAFEBABE‘ is the key identifier2 for your key, as reported by GnuPG.
You need to have ‘gpg-agent‘ or equivalent software configured, for now,
because Obnam has no way to ask for or configure the passphrase.

After this, Obnam will automatically encrypt and decrypt data.

Note that if you encrypt your backups, you’ll want to back up your GPG
key in some other way. You can’t restore any files from the obnam backup
without it, so you can’t rely on the same obnam backup to back up the GPG
key itself. Back up your passphrase-encrypted GPG key somewhere else,
and make sure you have a passphrase strong enough to stand up to offline
brute-force attacks. Remember that if you lose access to your GPG key, your
entire backup becomes useless.

If you enable encryption after making backups, you need to start over with
a new repository.

You can’t mix encrypted and unencrypted backups in the same repository.

(There are a bunch of Obnam commands for administering encryption.
You won’t need them, unless you share the same repository with several
machines. In that case, you should read the manual page.)

See also Setting up Obnam to use encryption.

2Not yet defined
9

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 3
You know you should

This chapter is philosophical and theoretical about backups. It discusses
why you should back up, various concepts around backups, what kinds of
things you should think about when setting up backups and what to do in
the long term (verification, etc). It also discusses some assumptions Obnam
makes and some constraints it imposes.

Why backup?

Backup concepts

This section covers core concepts in backups, and defines some terminology
used in this book.

Live data3 is the data you work with or keep. It’s the files on your hard
drive: the documents you write, the photos you save, the unfinished novels
you wish you’d finish.

Most live data is precious4 in that you’ll be upset if you lose it. Some live
data is not precious: your web browser cache probably isn’t, for example.
This distinction can let you limit the amount of data you need to back up,
which can significantly reduce your backup costs.

A backup5 is a spare copy of your live data. If you lose some or all of your
live data, you can get it back ("restore6") from your backup. The backup
copy is, by practical necessity, older than your live data, but if you made the
backup recently enough, you won’t lose much.

3all the data you have
4all the data you care about, see also Backup concepts
5a separate safe copy of your live data that will remain intact even if the primary copy

gets destroyed deleted or wrongly modified
6retrieving data from a backup repository

10

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BACKUP CONCEPTS

Sometimes it’s useful to have more than one old backup copy of your live
data. You can have a sequence of backups, made at different times, giving
you a backup history7. Each copy of your live data in your backup history
is a generation8. This lets you retrieve a file you deleted a long time ago, but
didn’t realise you needed until now. If you only keep one backup version,
you can’t get it back, but if you keep, say, a daily backup for a month, you
have a month to realise you need it, before it’s lost forever.

The place your backups are stored is the backup repository9. You can
use many kinds of backup media10 for backup storage: hard drives, tapes,
optical disks (DVD-R, DVD-RW, etc), USB flash drives, online storage, etc.
Each type of medium has different characteristics: size, speed, convenience,
reliability, price, which you’ll need to balance for a backup solution that’s
reasonable for you.

You may need multiple backup repositories or media, with one of
them located off-site11, away from where your computers normally live.
Otherwise, if your house burns down, you’ll lose all your backups too.

You need to verify12 that your backups work. It would be awkward to go to
the effort and expense of making backups and then not be able to restore
your data when you need to. You may even want to test your disaster
recovery13 by pretending that all your computer stuff is gone, except for
the backup media. Can you still recover? You’ll want to do this periodically,
to make sure your backup system keeps working.

There is a very large variety of backup tools14. They can be very simple and
manual: you can copy files to a USB drive using your file manager, once in a
blue moon. They can also be very complex: enterprise backup products that
cost huge amounts of money and come with a multi-day training package
for your sysadmin team, and which require that team to function properly.

You’ll need to define a backup strategy15 to tie everything together: what
live data to back up, to what medium, using what tools, what kind of
backup history to keep, and how to verify that they work.

7all the backup generations
8a backup in a series of backups of the same live data, to give historical insight
9the location where your backups are stored

10where a backup repository is stored
11a backup repository stored physically far away from the live data
12making sure a backup system works and that data actually can be restored from backups

and that the backups have not become corrupted
13what you do when something goes wrong
14FIXME - not defined
15a plan for how to make sure your data is safe even if the dinosaurs return in space ships

to re-take world now that the ice age is over

11

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BACKUP STRATEGIES

Backup strategies

You’ve set up a backup repository, and you have been backing up to it every
day for a month now: your backup history is getting long enough to be
useful. Can you be happy now?

Welcome to the world of threat modelling. Backups are about insurance, of
mitigating small and large disasters, but disasters can strike backups as well.
When are you so safe, that no disaster can affect you?

There is always a bigger disaster waiting to happen. If you backup to a
USB drive on your work desk, and someone breaks in and steals both your
computer and the USB drive, the backups did you no good.

You fix that by having two USB drives, and you keep one with your
computer and the other in a bank vault. That’s pretty safe, unless there’s
an earth quake that destroys both your home and the bank.

You fix that by renting online storage space from another country. That’s
quite good, except there’s a bug in the operating system that you use, which
happens to be the same operating system the storage provider uses, and
hackers happen to break into both your and their systems, wiping all files.

You fix that by hiring a 3D printer that prints slabs of concrete on which
your data is encoded using QR codes. You’re safe until there’s a meteorite
hits Earth and destroys the entire civilisation.

You fix that by sending out satellites with copies of your data, into stable
orbits around all nine planets (Pluto is too a planet!) in the solar system.
Your data is safe, even though you yourself are dead from the meteorite,
until the Sun goes supernova and destroys everything in the system.

There is always a bigger disaster. You have to decide which ones are likely
enough that you want to consider them, and also decide what the acceptable
costs are for protecting against them.

A short list of scenarios for thinking about threats:

• What if you lose your computer?
• What if you lose your home and all of its contents?
• What if the area in which you live is destroyed?
• What if you have to flee your country?

These questions do not cover everything, but they’re a start. For each one,
think about:

• Can you live with your loss of data? If you don’t restore your data,
does it cause a loss of memories, or some inconvenience in your daily
life, or will it make it nearly impossible to go back to living and
working normally? What data do you care most about?

12

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BACKUPS AND SECURITY

• How much is it worth to you to get your data back, and how fast do
you want that to happen? How much are you willing to invest money
and effort to do the initial backup, and to continue backing up over
time? And for restores, how much are you willing to pay for that? Is
it better for you to spend less on backups, even if that makes restores
slower, more expensive, and more effort? Or is the inverse true?

The threat modelling here is about safety against accidents and natural
disasters. Threat modelling against attacks and enemies is similar, but also
different, and will be the topic of the next episode in the adventures of Bac-
Kup.

Backups and security

You’re not the only one who cares about your data. A variety of
governments, corporations, criminals, and overly curious snoopers are
probably also interested. (It’s sometimes hard to tell them apart.) They
might be interested to find evidence against you, blackmail you, or just
curious about what you’re talking about with your other friends.

They might be interested in your data from a statistical point of view, and
don’t particularly care about you specifically. Or they might be interested
only in you.

Instead of reading your files and email, or looking at your photos and
videos, they might be interested in preventing your access to them, or to
destroy your data. They might even want to corrupt your data, perhaps by
planting child porn in your photo archive.

You protect your computer as well as you can to prevent these and other
bad things from happening. You need to protect your backups with equal
care.

If you back up to a USB drive, you should probably make the drive be
encrypted. Likewise, if you back up to online storage. There are many
forms of encryption, and I’m unqualified to give advice on this, but any
of the common, modern ones should suffice except for quite determined
attackers.

Instead of, or in addition to, encryption, you could ensure the physical
security of your backup storage. Keep the USB drive in a safe, perhaps,
or a safe deposit box.

The multiple backups you need to protect yourself against earthquakes,
floods, and roving gangs of tricycle-riding clowns, are also useful against
attackers. They might corrupt your live data, and the backups at your home,
but probably won’t be able to touch the USB drive encased in concrete and
buried in the ground at a secret place only you know about.

13

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BACKUP STORAGE MEDIA CONSIDERATIONS

The other side of the coin is that you might want to, or need to, ensure
others do have access to your backed up data. For example, if the clown
gang kidnaps you, your spouse might need access to your backups to be
able to contact your MI6 handler to ask them to rescue you. Arranging
safe access to (some) backups is an interesting problem to which there are
various solutions. You could give your spouse the encryption passphrase,
or give the passphrase to a trusted friend or your lawyer. You could also
use something like http://www.digital-scurf.org/software/libgfshare to
escrow encryption keys more safely.

Backup storage media considerations

This section discusses possibilities for backup storage media, and their
various characteristics, and how to choose the suitable one for oneself.

There are a lot of different possible storage media. Perhaps the most
important ones are -

• Magnetic tapes of various kinds.
• Hard drives: internal vs external, spinning magnetic surfaces vs SSDs

vs memory sticks.
• Optical disks: CD, DVD, Blu-ray.
• Online storage of various kinds.
• Paper.

We’ll skip the more exotic or unusual forms, such as microfilm.

Magnetic tapes

Magnetic tapes are traditionally probably the most common form of backup
storage. They can be cheap per gigabyte, but tend to require a fairly hefty
initial investment in the tape drive. Much backup terminology comes from
tape drives: full backup16 vs incremental backup17, especially. Obnam
doesn’t support tape drives at all.

Hard drives

Hard drives are a common modern alternative to tapes, especially for those
who do not wish to pay for a tape drive. Hard drives have the benefit of
every bit of backup being accessible at the same speed as any other bit,
making finding a particular old file easier and faster. This also enables
snapshot backups18, which is the model Obnam uses.

16a fresh backup of all precious live data
17a backup of any changes (new files, modified files, deletions) compared to a previous

backup generation (either the previous full backup or the previous incremental backup);
usually, you can’t remove a full backup without removing all of the incremental backups
that depend on it

18an alternative to full/incremental backups where every backup generation is effectively
a full backup of all the precious live data and can be restored and removed as easily as any
other generation

14

Version 2016.620– – Document LATEXed – 17th January 2016

http://www.digital-scurf.org/software/libgfshare

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BACKUP STORAGE MEDIA CONSIDERATIONS

Different types of hard drives have different characteristics for reliability,
speed, and price, and they may fluctuate fairly quickly from week to week
and year to year. We won’t go into detailed comparisons of all the options.
From Obnam’s point of view, anything that can look like a hard drive
(spinning rust, SSD, USB flash memory stick, or online storage) is useable
for storing backups, as long as it is re-writable.

Optical disks

Optical disks, particularly the kind that are write-once and can’t be updated,
can be used for backup storage, but they tend to be best for full backups that
are stored for long periods of time, perhaps archived permanently, rather
than for a actively used backup repository. Alternatively, they can be used
as a kind of tape backup, where each tape is only ever used once. Obnam
does not support optical drives as backup storage.

Paper

Paper likewise works better for archival purposes, and only for fairly small
amounts of data. However, a backup printed on good paper with archival
ink can last decades, even centuries, and is a good option for small, but
very precious data. As an example, personal financial records, secret
encryption keys, and love letters from your spouse. These can be printed
either normally (preferably in a font that is easy to OCR), or using two-
dimensional barcode (e.g, QR). Obnam doesn’t support these, either.

Obnam only works with hard drives, and anything that can simulate a
read/writable hard drive, such as online storage. By an amazing co-
incidence, this seems to be sufficient for most people.

15

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 4
Installing Obnam

This chapter explains how to install Obnam. It is not a very extensive
set of instructions, yet. In particular, it really only caters to Debian users.
Instructions for other systems would be very much welcome.

Debian

It is easiest to install Obnam on a Debian system. If you’re running Debian
’jessie’ or a later release, Obnam is included and you can just install it -

sudo apt-get install obnam

There may be a newer version of Obnam on the author’s site. The rest of
this section explains how to install from there.

Add the following line to your ‘/etc/apt/sources.list‘ file -

deb http://code.liw.fi/debian wheezy main

Then run the following commands -

sudo apt-get update
sudo apt-get install obnam

The commands will complain that the PGP key used to sign the archive is
not known to apt. You can either ignore this, or add the key from http:
//code.liw.fi/apt.asc to your key, after suitable verification.

Other systems

For other systems, you need to install from sources. See the "README" file
in the source tree for instructions.

16

Version 2016.620– – Document LATEXed – 17th January 2016

http://code.liw.fi/apt.asc
http://code.liw.fi/apt.asc

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 5
Backing up

This chapter discusses the various aspects of making backups with Obnam.

Your first backup

Let’s make a backup! To walk through the examples in this directory, you
need to have some live data to backup. The examples use specific filenames
for this. You’ll need to adapt the examples to your own files. The examples
assume your home directory is ‘/home/tomjon‘, and that you have a
directory called ‘Documents‘ in your home directory for your documents.
Further, it assumes you have a USB drive mounted at ‘/media/backups‘,
and that you will be using a directory ‘tomjon-repo‘ on that drive as the
backup repository.

With those assumptions, here’s how you would backup your documents:

obnam backup -r /media/backups/tomjon-repo ∼/Documents

That’s all. It will take a little while, if you have a lot of documents, but
eventually it’ll look something like this:

Backed up 11 files (of 11 found), uploaded 97.7 KiB in 0s at 647.2 KiB/s
average speed

This tells you that Obnam found a total of eleven files, of which it backed up
all eleven. The files contained a total of about a hundred kilobytes of data,
and that the upload speed for that data was over six hundred kilobytes per
second. The actual units are using IEC prefixes, which are base-2, to avoid
ambiguity. See "Wikipedia on kibibytes" 19 for more information.

Your first backup run should probably be quite small to see that all settings
are right without having to wait a long time. You may want to choose a
small directory to start with, instead of your entire home directory.

19Wikipedia on kibibytes https://en.wikipedia.org/wiki/Kibibyte

17

Version 2016.620– – Document LATEXed – 17th January 2016

https://en.wikipedia.org/wiki/Kibibyte

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

YOUR SECOND BACKUP

Your second backup

Once you’ve run your first backup, you’ll want to run a second one. It’s
done the same way:

obnam backup -r /media/backups/tomjon-repo ∼/Documents

Note that you don’t need to tell Obnam whether you want a full backup
or an incremental backup. Obnam makes each backup generation be a
snapshot of the data at the time of the backup, and doesn’t make a difference
between full and incremental backups. Each backup generation is equal to
each other backup generation. This doesn’t mean that each generation will
store all the data separately. Obnam makes sure each new generation only
backs up data that isn’t already in the repository. Obnam finds that data in
any file in any previous generation, amongst all the clients sharing the same
repository.

We’ll later cover how to remove backup generations, and you’ll learn that
Obnam can remove any generation, even if it shares some of the data with
other generations, without those other generations losing any data.

After you’ve done your second backup generation, you’ll want to see the
generations you have:

obnam generations -r /media/backups/tomjon-repo

2 2014-02-05 23:13:50 .. 2014-02-05 23:13:50 (14 files, 100000 bytes)
5 2014-02-05 23:42:08 .. 2014-02-05 23:42:08 (14 files, 100000 bytes)

This lists two generations, which have the identifiers 2 and 5. Note that
generation identifiers are not necessarily a simple sequence like 1, 2, 3.
This is due to how some of the internal data structures of Obnam are
implemented, and not because its author in any way thinks it’s fun to
confuse people.

The two time stamps for each generation are when the backup run started
and when it ended. In addition, for each generation is a count of files in
that generation (total, not just new or changed files), and the total number
of bytes of file content data they have.

Choosing what to backup, and what not to backup

Obnam needs to be told what to back up, by giving it a list of directories,
known as backup roots. In the examples in this chapter so far, we’ve used
the directory ‘∼/Documents‘ (that is, the directory ‘Documents‘ in your
home directory) as the backup root20. There can be multiple backup root21:

obnam -r /media/backups/tomjon-repo ∼/Documents ∼/Photos

20a directory that is to be backed up, including all files in it, and all its subdirectories
21a directory that is to be backed up, including all files in it, and all its subdirectories

18

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

STORING BACKUPS REMOTELY

Everything in the backup root directories gets backed up – unless it’s
explicitly excluded. There are several ways to exclude things from backups:

• The ‘--exclude‘ setting uses regular expressions that match the full
pathname of each file or directory: if the pathname matches, the file
or directory is not backed up. In fact, Obnam pretends it doesn’t
exist. If a directory matches, then any files and sub-directories also
get excluded. This can be used, for example, to exclude all MP3 files
("--exclude=’ṁp3").

• The ‘--exclude-caches‘ setting excludes directories that contain a
special "cache tag" file called ‘CACHEDIR.TAG‘, that starts with a
specific sequence of bytes. Such a tag file can be created in, for
example, a Firefox or other web browser cache directory. Those files
are usually not important to back up, and tagging the directory can be
easier than constructing a regular expression for ‘--exclude‘.

• The ‘--one-file-system‘ setting excludes any mount points and the
contents of the mounted filesystem. This is useful for skipping,
for example, virtual filesystems such as ‘/proc‘, remote filesystems
mounted over NFS, and Obnam repositories mounted with ‘obnam
mount‘ (which we’ll cover in the next chapter).

In general it is better to back up too much rather than too little. You should
also make sure you know what is and isn’t backed up. The ‘--pretend‘
option tells Obnam to run a backup, except it doesn’t change anything in
the backup repository, so it’s quite fast. This way you can see what would
be backed up, and tweak exclusions as needed.

Storing backups remotely

You probably want to store at least one backup remotely, or "off site".
Obnam can make backups over a network, using the SFTP protocol (part
of SSH). You need the following to achieve this:

• A server that you can access over SFTP. This can be a server you own,
a virtual machine ("VPS") you rent, or some other arrangement. You
could, for example, have a machine at a friends’ place, in exchange
for having one of their machines at your place, so that you both can
backup remotely.

• An ssh-key for logging into the server. You can log in using passwords
too, but it is quite cumbersome.

• Enough disk space on the server to hold your backups.

Obnam only uses the SFTP part of the SSH connection to access the server.
To test whether it will work, you can run this command:

sftp USER@SERVER

19

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

URL SYNTAX

Change ‘USER@SERVER‘ to be your actual user and address for your server.
This should say something like ‘Connected to localhost.‘ and you should be
able to run the ‘ls -la‘ command to see a directory list of files on the remote
side.

Once all of that is set up correctly, to get Obnam to use the server as a backup
repository, you only need to give an SFTP URL:

obnam -r sftp://USER@SERVER/ /my-precious-backups

For details on SFTP URLs, see the next section.

URL syntax

Whenever obnam accepts a URL, it can be either a local pathname, or an
SFTP URL. An SFTP URL has the following form:

sftp://[user@]domain[:port]/path

where ‘domain‘ is a normal Internet domain name for a server, ‘user‘ is your
username on that server, ‘port‘ is an optional numeric port number, and
‘path‘ is a pathname on the server side. Like **bzr**(1), but unlike the SFTP
URL standard, the pathname is absolute, unless it starts with ‘/ /‘ in which
case it is relative to the user’s home directory on the server.

Examples:

• ‘sftp://liw@backups.pieni.net/ /backup-repo‘ is the directory
‘backup-repo‘ in the home directory of the user ‘liw‘ on the server
‘backups.pieni.net‘. Note that we don’t need to know the absolute
path of the home directory.

• ‘sftp://root@my.server.example.com/home‘ is the directory ‘/home‘
(note absolute path) on the server ‘my.server.example.com‘, and the
‘root‘ user is used to access the server.

• ‘sftp://foo.example.com:12765/anti-clown-society‘ is the directory
‘/anti-clown-society‘ on the server ‘foo.example.com‘, accessed via the
port 12765.

You can use SFTP URLs for the repository, or the live data (‘–root‘), but
note that due to limitations in the protocol, and its implementation in the
paramiko library, some things will not work very well for accessing live
data over SFTP. Most importantly, the handling of of hardlinks is rather
suboptimal. For live data access, you should not end the URL with / /
and should append a dot at the end in this special case.

20

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

PULL BACKUPS

Pull backups

Obnam can also access the live data over SFTP, instead of via the local
filesystem. This means you can run Obnam on, say, your desktop machine
to backup your server, or on your laptop to backup your phone (assuming
you can get an SSH server installed on your phone). Sometimes it is not
possible to install Obnam on the machine where the live data resides, and
then it is useful to do a pull backup instead: you run Obnam on a different
machine, and read the live data over the SFTP protocol.

To do this, you specify the live data location (the ‘root‘ setting, or as a
command line argument to ‘obnam backup‘) using an SFTP URL. You
should also set the client name explicitly. Otherwise Obnam will use the
hostname of the machine on which it runs as the name, and this can be
highly confusing: the client name is ‘my-laptop‘ and the server is ‘down-
with-clowns‘ and Obnam will store the backups as if the data belongs to
‘my-laptop‘.

It gets worse if you backup your laptop as well to the same backup
repository. Then Obnam will store both the server and the laptop backups
using the same client name, resulting in much confusion to everyone.

Example:

obnam backup -r /mnt/backups sftp://server.example.com/home –client-
name=server.example.com

Configuration files: a quick intro

By this time you may have noticed that Obnam has a number of
configurable settings you can tweak in a number of ways. Doing it on the
command line is always possible, but then you get quite long command
lines. You can also put them into a configuration file.

Every command line option Obnam knows can be set in a configuration file.
Later in this manual there is a whole chapter that covers all the details of
configuration files, and all the various settings you can use. For now, we’ll
give a quick introduction.

An Obnam configuration looks like this:

[config]
repository = /media/backup/tomjon-repo
root = /home/liw/Documents, /home/liw/Photos
exclude = ṁp3
exclude-caches = yes
one-file-system = no

21

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

WHEN YOUR PRECIOUS DATA IS VERY LARGE

This form of configuration file is commonly known as an "INI file", from
Microsoft Windows ‘.INI‘ files. All the Obnam settings go into a section
titles ‘[config]‘, and each setting has the same name as the command line
option, but without the double dash prefix. Thus, it’s ‘--exclude‘ on the
command line and ‘exclude‘ in the configuration file.

Some settings can have multiple values, such as ‘exclude‘ and ‘root‘. The
values are comma separated. If there’s a lot of values, you can split them
on multiple lines, where the second and later lines are indented by space or
TAB characters.

That should get you started, and you can reference the "Obnam
configuration files and settings" chapter for all the details.

When your precious data is very large

When your precious data is very large, the first backup may a very long
time. Ditto, if you get a lot of new precious data for a later backup. In these
cases, you may need to be very patient, and just let the backup take its time,
or you may choose to start small and add to the backups a bit at a time.

The patient option is easy: you tell Obnam to backup everything, set it
running, and wait until it’s done, even if it takes hours or days. If the
backup terminates prematurely, e.g., because of a network link going down,
you won’t have to start from scratch thanks to Obnam’s checkpoint support.
Every gigabyte or so (by default) Obnam stops a backup run to create a
checkpoint generation. If the backup later crashes, you can just re-run
Obnam and it will pick up from the latest checkpoint. This is all fully
automatic, you don’t need to do anything for it to happen. See the ‘--
checkpoint‘ setting for choosing how often the checkpoints should happen.

Note that if Obnam doesn’t get to finish, and you have to re-start it, the
scanning starts over from the beginning. The checkpoint generation does
not contain enough state for Obnam to continue scanning from the latest
file in the checkpoint: it’d be very complicated state, and easily invalidated
by filesystem changes. Instead, Obnam scans all files, but most files will
hopefully not have changed since the checkpoint was made, so the scanning
should be relatively fast.

The only problem with the patient option is that your most precious
data doesn’t get backed up while all your large, but less precious data
is being backed up. For example, you may have a large amount of
downloaded videos of conference presentations, which are nice, but not
hugely important. While those get backed up, your own documents do not
get backed up.

You can work around this by initially excluding everything except the most
precious data. When that is backed up, you gradually reduce the excludes,
re-running the backup, until you’ve backed up everything. As an example,
your first backup might have the following configuration:

22

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

DE-DUPLICATION

obnam backup -r /media/backups/tomjon-repo ∼ --exclude
∼/Downloads

This would exclude all downloaded files. The next backup run might
exclude only video files:

obnam backup -r /media/backups/tomjon-repo ∼ --exclude
∼/Downloads/’.*ṁp4’

After this, you might reduce excludes to allow a few videos, such as those
whose name starts with a specific letter:

obnam backup -r /media/backups/tomjon-repo ∼ --exclude
∼/Downloads/’[b− zB −Z].*ṁp4’

Continue allowing more and more videos until they’ve all been backed up.

De-duplication

Obnam de-duplicates22 the data it backs up, across all files in all generations
for all clients sharing the repository. It does this by breaking up all file data
into bits called chunks. Every time Obnam reads a file and gets a chunk
together, it looks into the backup repository to see if an identical chunk
already exists. If it does, Obnam doesn’t need to upload the chunk, saving
space, bandwidth, and time.

De-duplication in Obnam is useful in several situations:

• When you have two identical files, obviously. They might have
different names, and be in different directories, but contain the same
data.

• When a file keeps growing, but all the new data is added at the end.
This is typical for log files, for example. If the leading chunks are
unmodified, only the new data needs to be backed up.

• When a file or directory is renamed or moved. If you decide that the
English name for the ‘Photos‘ directory is annoying and you want to
use the Finnish ‘Valokuvat‘ instead, you can rename that in an instant.
However, without de-duplication, you then have to backup all your
photos again.

• When all of a team works on the same things, and everyone has copies
of the same files, the backup repository only needs one copy of each
file, rather than one per team member.

De-duplication in Obnam isn’t perfect. The granularity of finding duplicate
data is quite coarse (see the ‘--chunk-size‘ setting), and so Obnam often
doesn’t find duplication when it exists, when the changes are small.

De-duplication isn’t useful in the following scenarios:

22this is a specialised data compression technique for eliminating duplicate copies of
repeating data

23

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

DE-DUPLICATION AND SAFETY AGAINST CHECKSUM
COLLISIONS

• A file changes such that things move around within the file. The
(current) Obnam de-duplication is based on non-overlapping chunks
from the beginning of a file. If some data is inserted, Obnam won’t
notice that the chunks have shifted around. This can happen, for
example, for disk or ISO images.

• Files with duplicate data that is not on a chunk boundary. For example,
emails with large attachments. Each email recipient gets different
‘Received‘ headers, which shifts the body and attachments by different
amounts. As a result, Obnam won’t notice the duplication.

• Data in compressed files, such as ‘.zip‘ or ‘.tar.xz‘ files. Obnam doesn’t
know about the file compression, and only sees the compressed
version of the data. Thus, Obnam won’d de-duplicate it.

A future version of Obnam will hopefully improve the de-duplication
algorithms. If you see this optimistic paragraph in a version of Obnam
released in 2017 or later, please notify the maintainers. Thank you.

De-duplication and safety against checksum collisions

This is a bit of a scary topic, but it would be dishonest to not discuss it at all.
Feel free to come back to this section later.

Obnam uses the MD5 checksum algorithm for recognising duplicate data
chunks. MD5 has a reputation for being unsafe: people have constructed
files that are different, but result in the same MD5 checksum. This is true.
MD5 is not considered safe for security critical applications.

Every checksum algorithm can have collisions. Changing Obnam to use,
say, SHA1, SHA2, or the as new SHA3 algorithm would not remove the
chance of collisions. It would reduce the chance of accidental collisions, but
the chance of those is already so small with MD5 that it can be disregarded.
Or put in another way, if you care about the chance of accidental MD5
collisions, you should be caring about accidental SHA1, SHA2, or SHA3
collisions as well.

Apart from accidental collisions, there are two cases where you should
worry about checksum collisions (regardless of algorithm).

First, if you have an enemy who wishes to corrupt your backed up data, they
may replace some of the backed up data with other data that has the same
checksum. This way, when you restore, your data is corrupted without
Obnam noticing.

Second, if you’re into researching checksum collisions, you’re likely to have
files that cause checksum collisions, and in that case, if you restore after a
catastrophe, you probably want to get the files back intact, rather having
Obnam confuse one with the other.

To deal with these situations, Obnam has three de-duplication modes, set
using the ‘--deduplicate‘ setting:

24

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

LOCKING

• The default mode, ‘fatalist‘, assumes checksum collisions do not
happen. This is a reasonable compromise between performance,
safety, and security for most people.

• The ‘verify‘ mode assumes checksum collisions do happen, and
verifies that the already backed up chunk is identical to the chunk
to be backed up, by comparing the actual data. Doing this requires
downloading the chunk from the backup repository, which can be
quite slow, since checksums will often match. This is a useful mode
if you have very fast access to the backup repository, and want to
de-duplicate, such as when the backup repository is on a locally
connected hard drive.

• The ‘never‘ mode turns off de-duplication completely. This is useful
if you’re worried about checksum collisions, and do not require de-
duplication.

There is, unfortunately, no way to get both de-duplication that is
invulnerable to checksum collision and is fast even when accessing the
backup repository is slow. The only way to be invulnerable is to compare
the data, and if downloading the data from the repository is slow, then the
comparison will take significant time.

Locking

Multiple clients can share a repository, and to prevent them from trampling
on each other, they lock parts of the repository while working. The "Sharing
a repository between multiple clients" chapter will discuss this in more
detail.

If Obnam terminates abruptly, even if there’s only one client ever using the
repository, the lock may stay around and prevent that one client for making
new backups. The termination may be due to the network connection
breaking, or due to a bug in Obnam. It can also happen if Obnam is
interrupted by the user before it’s finished.

The Obnam command ‘force-lock‘ deals with this situation. It is dangerous,
though. If you force open a lock that is in active use by a running Obnam
instance, there will likely to be some stepping of toes. The result may, in
extreme cases, even result in repository corruption23. So be careful.

If you’ve decided you can safely do it, this is an example of how to do it:

obnam -r /media/backups/tomjon-repo force-lock

Note that some of the locks are per-client, to prevent you from accidentally
running Obnam twice for the same client, which would result in standing
on your own toes: kind of impressive, but uncomfortable and not
recommended.

23unwanted modification to (backup) data

25

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

CONSISTENCY OF LIVE DATA

If you need to force open a lock for specific client, you can specify the client
name explicitly:

obnam --client-name magrat -r /media/backups/tomjon-repo force-lock

Consistency of live data

Making a backup can take a good while. While the backup is running, the
filesystem may change. This leads to the snapshot of data Obnam presents
as a backup generation being internally inconsistent. For example, before
a backup you might have two files, A and B, which need to be kept in
sync. You run a backup, and while it’s happening, you change A, and
then B. However, you’re unlucky, and Obnam manages to backup A before
you save your changes, and B after you save changes to that. The backup
generation now has versions of A and B that are not synchronised. This is
bad.

This can be dealt with in various ways, depending on the circumstances.
Here’s a few:

• The Logical Volume Manager (LVM) provides snapshots. You can
set up your backups so that they first create a snapshot of each
logical volume to be backed up, run the backup, and delete the
snapshot afterwards. This prevents anyone from modifying the files
in the snapshot, but allows normal use to continue while the backup
happens.

• A similar thing can be done using the btrfs filesystem and its
subvolumes.

• You can shut down the system, reboot it into single user mode, and
run the backup, before rebooting back into normal mode. This is not a
good way to do it, but it is the safest way to get a consistent snapshot
of the filesystem.

Note that filesystem level snapshots can’t really guarantee a consistent view
of the live data. An application may be in the middle of writing a file, or set
of files, when the snapshot is being made. To some extent this indicates an
application bug, but knowing that doesn’t let you sleep better.

Usually, though, most systems have enough idle time that a consistent
backup snapshot can happen during that time. For a laptop, for example,
a backup can be run while the user is elsewhere, instead of actively using
the machine.

Part of your backup verification suite should check that the data in a backup
generation is internally consistent, if that can be done. Otherwise, you’ll
either have to analyse the applications you use, or trust they’re not too
buggy.

If you didn’t understand this section, don’t worry and be happy and sleep
well.

26

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 6
Restoring from backups

The worst has happened! Your cat got confused between its litter box and
your hard drive! Your goat deleted your most important document ever!
Woe be you!

Let’s stay calm. This is why you have backups. There’s no need for
exclamation marks. Take a deep breath, have a cup of tea, and all will be
well.

There’s two different approaches for restoring data with Obnam. One relies
on a FUSE filesystem, which is a very nice piece of technology that allows
Obnam to let you view your backups as just another directory. It is the
preferred way, but it is not always available, so Obnam also provides a more
primitive, less easy to use method.

Oh no! It’s all FUSEd together

The ‘obnam mount‘ command lets you look at your backups as if they were
just another directory. This requires that you have FUSE setup. See the
installation chapter for details on that. Most modern Linux desktops have
this out of the box.

mkdir ∼/backups
obnam mount --to ∼/backups

Run the above command, and then look at the ‘∼/backups‘ directory. You’ll
see something like this:

ls -l /backups
total 12
drwxr-xr-x 24 root root 4096 Feb 11 21:41 2
drwxr-xr-x 24 root root 4096 Feb 11 21:41 5
lrwxr-xr-x 24 root root 4096 Feb 11 21:41 latest -> 5

27

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

RESTORING WITHOUT FUSE

Each directory in ‘∼/backups‘ is a backup generation, named after the
generation identifier Obnam invents. The ‘latest‘ symbolic link points at
the latest generation.

After this, you can restore a single file very easily:

cp ∼/backups/latest/home/tomjon/Documents/iloveyou.txt
∼/restored.txt

You can copy any files you want from the ‘∼/backups‘ directory, from any
generation, or all of them if you want to. You can look at files directly, before
copying them out, too.

less ∼/backups/2/home/tomjon/Documents/iloveyou.txt

This is an easy way to make sure you find the right version instead of just
the latest one.

You can’t delete anything in ‘∼/backups‘. That directory is read-only, and
you can’t accidentally, or on purpose, delete or modify anything there. This
is intentional: the ‘obnam mount‘ command is meant to be a safe way for
you to look at your backups, not something you need to be careful about.

Once you’re done looking at your backups, you can un-mount the
repository:

fusermount -u ∼/backups

In addition to doing these things from the command line, you can, of course,
use your favorite file manager (graphical or textual) to look at your backed
up files. The mounting and un-mounting (depending on your desktop
setup) may need to be done on the command line.

Restoring without FUSE

When ‘obnam mount‘ isn’t available, you can do restores directly with just
Obnam. Use ‘obnam generations‘ and ‘obnam ls‘ to find the right generation
to restore, and then run a command like this:

obnam restore --to /tmp/tomjon-restored /home/tomjon/Documents

This would restore just the indicated directory. If you don’t tell Obnam what
to restore, it’ll restore everything in the latest generation. You can choose a
different generation with ‘--generation‘:

obnam restore --to /tmp/tomjon-restored --generation 2

Note that you can’t restore to a directory that already exists. This is to
prevent you from accidentally overwriting your live data with restored files.
If you do want to replace your live data with restored files, you should
restore to a temporary location first, and then move the files to where you
want them to be.

28

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

AN ACTUAL EXAMPLE OF A RESTORATION

An actual example of a restoration

I had a corrupted gnus file, and this is how I restored it from backup.

obnam --config=/home/foobar/cron/conf/obnam.conf generations>
/home/foobar/cron/upload/obgen.txt

This copies all generations for the main obnam backup to obgen.txt, and this
is part of that file.

1207586 2014-08-25 08:00:43 .. 2014-08-25 08:08:24 (385163 files,
175029819657 bytes)
1208367 2014-08-25 12:00:42 .. 2014-08-25 12:08:31 (385965 files,
175057598863 bytes)
1209313 2014-08-25 16:00:12 .. 2014-08-25 16:07:33 (386537 files,
175076976590 bytes)
1210254 2014-08-25 20:00:15 .. 2014-08-25 20:09:41 (386896 files,
175086483254 bytes)

And I decided to restore from generation 1208367.

This is the actual restore command.

obnam --config=/home/foobar/cron/conf/obnam.conf --
generation=1208367 restore /home/foobar/News/rss/nnrss.el --
to=/home/foobar/cron/upload/

This restores ’nnrss.el’ to /home/foobar/cron/upload/ from where I was
able to copy it back to its proper place in /home/foobar/News/rss/

Obviously you replace your user-name for foobar.

Practice makes restores painless

You should practice doing restores. This makes you trust your backups
more, and lets you be calmer if disaster were to strike. (In fancier terms,
you should test your disaster recovery plan.)

Do a trial restore of a few files, or all files, until you’re sure you know how
to do that. Then do it again, from time to time, to be sure your backups still
work. It’s much less frightening to do a real restore, when data has actually
gone missing, if you’ve done it before.

In extreme cases, particularly if you’re an Obnam developer, you perhaps
format your hard drive and then do complete restore, just so you know you
can. If you’re not an Obnam developer, this is perhaps a bit extreme: at least
use a separate hard drive instead of your normal one.

29

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 7
Forgetting old backup generations

Every time you make a backup, your backup repository grows in size. To
avoid overflowing all available storage, you need to get rid of some old
backups. That’s a bit of a dilemma, of course: you make backups in order
to not lose data and now you have to do exactly that.

Obnam uses the term "forget" about removing a backup generation. You
can specify which generation to remove manually, by generation identifier,
or you can have a schedule to forget them automatically.

To forget a specific generation:

obnam forget 2

(This example assumes you have a configuration file that Obnam finds
automatically, and that you don’t need to specify things like repository
location or encryption on the command line.)

You can forget any individual generation. Thanks to the way Obnam treats
every generation as an independent snapshot (except it’s not really a full
backup every time), you don’t have to worry about the distinctions between
a full and incremental backup.

Forgetting backups manually is tedious, and you probably want to use a
schedule to have Obnam automatically pick the generations to forget. A
common type of schedule is something like this:

• keep one backup for each day for the past week
• keep one backup for each week for the past three months
• keep one backup for each month for the past two years
• keep one backup for each year for the past fifty seven years

Obnam uses the ‘--keep‘ setting to specify a schedule. The setting for the
above schedule would look like this:

--keep 7d,15w,24m,57y

30

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

CHOOSING A SCHEDULE FOR FORGETTING GENERATIONS

This isn’t an exact match, due to the unfortunate ambiguity of how long
a month is in weeks, but it’s close enough. The setting "7d" is interpreted
as "the last backup of each calendar day for the last seven days on which
backups were made". Similarly for the other parts of the schedule. See the
Obnam configuration files and settings chapter for exact details.

The schedule picks a set of generations to keep. Everything else gets
forgotten.

Choosing a schedule for forgetting generations

The schedule for retiring backup generations is a bit of a guessing game, just
like backups in general. If you could reliably tell the future, you’d know all
the disasters that threaten your data, and you could backup only the things
that would otherwise be lost in the future.

In this reality, alas, you have to guess. You need to think about what risks
you’re facing (or your data is), and how much backup storage space you’re
willing to spend on protecting against them.

• Are you afraid of your hard drive suddenly failing in a very
spectacular way, such as by catching fire or being stolen? If so, you
really only need one very recent backup to cover against that.

• Do you worry about your hard drive, or filesystem, or your applicatin
programs, or you yourself, slowly corrupting your data over a longer
period of time? How long will it take you to find that out? You need
a backup history that lasts longer than it takes for you to detect slow
corruption.

• Likewise with accidental deletion of files. How long will it take for you
to notice? That’s how long the backup history should be, at minimum.

There’s other criteria as well. For example, would you like to see, in fifty
years, how your files are laid out today? If so, you need a fifty-year-old
backup, plus perhaps a backup from each year, if you want to compare how
things were each year in between. With increasing storage space and nice
de-duplication features, this isn’t quite as expensive as it might be.

There is no one schedule that fits everyones needs and wants. You have to
decide for youself. That’s why the default in Obnam is to keep everything
forever. It’s not Obnam’s duty to decide that you should not keep this or
that backup generation.

31

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 8
Verifying backups

It’s 9 in the evening. Do you know if your backups work? Do you know
when you last made a successful backup of all of your data? Do you know
whether you can restore from that backup? If not, how well can you sleep?

You should verify your backups, and do it regularly, not just when you first
set up the backup system. Verification means doing whatever you need
to do to ensure all of your precious data has been backed up and can be
correctly restored from the backups.

The simplest way to do that is to restore all your data, and compare it with
your live data, and note any differences. That requires you have enough
free disk space to restore everything, but it’s almost the only way to be really
sure.

It’s also a great way to ensure the restoring actually works. If you don’t test
that, don’t expect it’ll work when needed.

If you have the disk space to do a complete restore, doing so is a great way
to exercise your disaster recovery process in general. Here’s one way of
doing it:

• On your main computer, do a backup.
• On a second computer, perhaps borrowed for this, restore all your

data, without using your main computer at all.
• Start using the restored data as your live data. Do real work, and do all

the things you normally do. Pretend your main computer was eaten
by your pet shark.

• If you notice something missing, or being corrupt, or being too old,
get the files from your main computer, and fix your backup process so
that the next time you won’t have that problem.

How often should you do that? That, again, depends on how you feel about
your data, and how much you trust your backup tools and processes. If
it’s really important that you can recover from a disaster, you need to verify
more frequently. If data loss is merely inconvenient and not life-changingly
disastrous, you can verify less often.

32

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

In addition to restoring data, Obnam provides two other ways to verify your
backups:

• ‘obnam verify‘ is like ‘obnam restore‘, except it compares the backed
up data with live data, and reports any differences. This requires you
to trust that Obnam does the verification correctly.

• ‘obnam mount‘ lets you access your backed up data as if it were just a
directory. You can then use any tool you trust to compare the backed
up data with live data. This is very much like doing a restore, since
the comparison tool will have to extract all the data and metadata from
the backup; it just doesn’t write it out.

Both of these approaches have the problem that they compare a backup with
live data, and the live data may have changed after the backup was made.
You need to verify all differences manually, and if the live data changes
frequently, there can be a large number of wrong reports.

33

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 9
Sharing a repository between multiple
clients

Obnam lets you backup several computers to the same repository. Each
client is identified by a name, which defaults to the system hostname: the
name you get when you run the ‘hostname‘ command. You can also set the
name explicitly, using the ‘--client-name‘ setting in Obnam.

All the clients sharing a repository share the file content data (the chunks),
and can de-duplicate across clients. Each client has its own backup
generations, and those are fully independent from other clients. You can,
for example, forget any generations you want for one client, and it doesn’t
affect the generations or any backed up data from any other client.

Obnam takes care of locking automatically so you can run Obnam on each
client without having to arrange it so that you only run it on one client at a
time.

A caveat of sharing a repository is that any client has access to all chunks,
and can delete any other client from the repository. This means you should
only share a repository amongst clients in the same security domain: all
clients should be trusted equally. If one client gets hacked, then the intruder
has access to all the data in the repository, and can delete the backups of all
the clients using that repository.

To share a repository amongst clients you need to do the following:

• Set a unique name for each client. It needs to be unique within the
repository.

• Arrange for each client to have access to the repository.

That’s all.

To see what clients are using a repository, use this:

obnam clients

34

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

There is currently no way to remove a client from a repository, unless you’re
using encryption. This is to be considered a bug in Obnam, and will be fixed
at a future time. After that, a time machine will be developed so that this
paragraph will have never existed.

35

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 10
Using encryption

Obnam allows you to encrypt your backups. This chapter discusses why
and how to do that.

You don’t admit to being a spy, so isn’t encryption
unnecessary?

You’re not the only one who cares about your data. A variety of
governments, corporations, criminals, and overly curious snoopers und
lookenpeepers may also be interested. (It’s sometimes hard to tell them
apart.) They might be interested in it to data in order to find evidence
against you, blackmail you, or just curious about what you’re talking about
with your other friends.

They might be interested in your data from a statistical point of view, and
don’t particularly care about your specifically. Or they might be interested
only in you.

Instead of reading your files and email, or looking at your photos and
videos, they might be interested in preventing your access to them, or to
destroy your data. They might even want to corrupt your data, perhaps by
planting child porn in your photo archive.

You protect your computer as well as you can to prevent these and other
bad things from happening. You need to protect your backups with equal
care.

If you back up to a USB drive, you should probably make the drive be
encrypted. Likewise, if you back up to online storage. There are many
forms of encryption, and I’m unqualified to give advice on this, but any
of the common, modern ones should suffice except for quite determined
attackers.

36

Version 2016.620– – Document LATEXed – 17th January 2016

https://en.wikipedia.org/wiki/Blinkenlights

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

HOW OBNAM ENCRYPTION WORKS

Instead of, or in addition to, encryption, you could ensure the physical
security of your backup storage. Keep the USB drive in a safe, perhaps,
or a safe deposit box.

The multiple backups you need to protect yourself against earthquakes,
floods, and roving gangs of tricycle-riding clowns, are also useful against
attackers. They might corrupt your live data, and the backups at your home,
but probably won’t be able to touch the USB drive encased in concrete and
buried in the ground at a secret place only you know about.

The other side of the coin is that you might want to, or need to, ensure
others do have access to your backed up data. For example, if the clown
gang kidnaps you, your spouse might need access to you backups to be
able to contact your MI6 handler to ask them to rescue you. Arranging
safe access to (some) backups is an interesting problem to which there are
various solutions. You could give your spouse the encryption passphrase,
or give the passphrase to a trusted friend or your lawyer. You could also
use something like libgfshare to escrow encryption keys more safely.

How Obnam encryption works

An Obnam repository contains several directories, for different types of
data.

• A per-client directory for each client, for data that is only relevant to
that client, such as the generations to that client.

• A directory for the list of clients.
• A directory for all the chunks of file content data, plus additional

directories used for de-duplicating chunks.

The per-client directory is encrypted so that only that client can access it.
This means that only the client itself can see its generations, and the files in
each generation.

The shared directories (client list, chunks) is encrypted so that all clients can
use them. This allows clients to share chunks, so that de-duplication works
across all clients.

This encryption scheme assumes that all clients sharing a repository trust
each other, and that it’s OK for them to be able to read all the chunk data
they want. The encryption does not protect siblings from reading each
others e-mail from the backup repository, for example, but it does protect
them against their parents, if the parents don’t have a suitable encryption
key.

In addition to the encryptions for client you can add additional keys. These
keys can also access the backup repository. For example, the parents’ key
might be added to the repository so that if need be, they could restore any
child’s data, even if the child had lost their own encryption key.

37

Version 2016.620– – Document LATEXed – 17th January 2016

http://www.digital-scurf.org/software/libgfshare

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

SETTING UP OBNAM TO USE ENCRYPTION

In a corporate setting, the backup administrator key might be added so that
the administrator can, for example, verify the integrity of the repository, or
to access data of an employee who has won the lottery and isn’t currently
available due to bad Internet access to the Moon.

Such additional keys can be added either for any one client, or to all clients.

Setting up Obnam to use encryption

Obnam uses PGP keys, specifically the GNU Privacy Guard (GnuPG, gpg)
implementation of them. To use encrypted backups, you need to first create
a PGP key pair for yourself. See the GnuPG documentation for instructions.

Once you have a working GnuPG setup and a key pair (consisting of a
public key and a secret key), you need to find the key identifier for them.
Run the following command and pick your key from the list.

gpg --list-keys

The output will look something like this:

pub 4096R/5E8511F9 2009-07-22
uid Lars Wirzenius <liw@liw.fi>
sub 2048R/9BE35AE6 2011-08-05

That’s the output for one key; there may be many keys. The key identifier is
on the line staring with ‘pub‘, in the second column after the slash. Above,
it’s 5E8511F9.

In the rest of the examples in this chapter, we’ll assume your key identifier
is CAFEFACE.

To set up encryption, use the ‘--encrypt-with‘ setting:

[config]
encrypt-with = CAFEFACE

That’s all.

Note that a repository should be fully encrypted or not encrypted at all, and
that you can’t switch afterwards. If you change your mind about whether
to use encryption at all, you’ll need to start a new repository. All clients
sharing a repository need to be using encryption, or else none of them
may use encryption. If you mix encryption or cleartext backups, the error
messages may prove to be confusing.

Obnam will automatically encrypt all the files it writes to the backup
repository, and de-crypt them when needed. As long as you only have one
encryption key for each client, and don’t add additional keys, Obnam will
take care of adding the right keys to the right places automatically.

38

Version 2016.620– – Document LATEXed – 17th January 2016

http://www.gnupg.org/documentation/

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

CHECKING IF A REPOSITORY USES ENCRYPTION

Checking if a repository uses encryption

There is no direct way with Obnam to check if a repository uses encryption.
However, you can check that manually: if your repository contains the file
‘clientlist/key‘, the repository is encrypted.

Managing encryption keys in a repository

This section discusses how to manage encryption keys in a repository, how
to add additional keys for each toplevel, and how to change keys for a client.
It also shows how to check what keys are being used, and what access each
key has.

39

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 11
Other stuff

This chapter discusses topics that do not warrant a chapter of their own,
such as compressing backups and running Obnam from cron.

k4dirstat cache files

"k4dirstat" is a utility for visualising the disk space used by a directory
tree. Obnam’s "kdirstat" command can be used to produce a listing of the
contents of a generation in a format which can be read by k4dirstat using
"File", "Read Cache File" from the k4dirstat menu. e.g.

obnam kdirstat --client CLIENT --generation GENID >
CLIENT.kdirstat.cache

gzip -v9 CLIENT.kdirstat.cache # OPTIONAL

"CLIENT.kdirstat.cache[.gz]" can now be read by "k4dirstat".

https://bitbucket.org/jeromerobert/k4dirstat/wiki/Home

40

Version 2016.620– – Document LATEXed – 17th January 2016

https://bitbucket.org/jeromerobert/k4dirstat/wiki/Home

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 12
Case studies

This chapter goes through, in some detail, some typical use cases for
backups. For case, it discusses the data being backed up, and explains
choices of backup strategy, storage, etc. Some case studies:

• Single laptop user, typical data of documents, photos, music, backing
up to a USB hard drive.

• A VPS or similar server, with web pages, e-mail, and maybe other data,
backed up to another server.

• A small company with a number of laptops and desktops, a local file
server, a rented co-lo server, backing up to a rented server in a co-lo
and to a rotated set of large USB drives.

• Restoring from a complete disaster, where all local computers and
storage media are destroyed, but there is an off-site backup that is
intact.

41

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 13
Troubleshooting

This chapter discusses how to debug problems with Obnam. It covers
things such as log files, various levels of logging and tracing, and common
problems with Obnam use. It also explains what things go where in an
Obnam backup repository.

Turning on full logging

Obnam can write a log file. There are several options controlling that.
Knowing these can help get out the most information when there’s a
problem that needs to be investigated.

• ‘–log=obnam.log‘ tells Obnam where to log. The log is a simple text
file.

• ‘–log-level=debug‘ tells Obnam to log at the most detailed level. The
default level is ‘info‘, which excludes most debug information.

• ‘–trace=obnamlib –trace=larch‘ tells Obnam to log additional debug
information. The two arguments match all filenames in Obnam and
the Larch library Obnam uses. This additional information is mostly
useful to someone who can read and understand the program source
code.

Note that these settings can make log files be quite large, in the order of tens
of megabytes. The size depends on how many files and how much data
your live data has.

Reporting problems ("bugs")

If you have a problem with Obnam, and you want to report it (please do!),
including the following information is helpful and makes it easier to figure
out what the problem is.

42

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

REPORTING PROBLEMS ("BUGS")

• You should report problems to the ‘obnam-support@obnam.org‘
mailing list. This is a publically archived mailing list where various
people help others use Obnam.

• What is the problem? What did you try to achieve? What actually
happened?

• The version of Obnam and Larch you’re using, and how you installed
it.

– On Debian, run ‘dpkg -l obnam python-larch‘ on the command
line and include the output.

• The exact command line you used. Copy-paste it instead of typing it
again into the mail. Sometimes the problem can be hidden if you don’t
copy the command line exactly. Also, copying by typing is boring, and
we should avoid boring things in life.

• If there’s an error message, copy-paste that into the mail.
• The output of ‘obnam –dump-config‘, which includes the full

configuration. Include it as an attachment to your mail to ‘obnam-
support‘. If you have some secret information, such as filenames or
hostnames, you can replace those with XXXX.

• If you can reproduce the problem while running with ‘–log-
level=debug‘, ‘–log=obnam.log‘ and ‘–trace=obnamlib –trace=larch‘
options, include a suitable amount from the end of the log file. The
suitable amount may depend on the situation, but if you give the last
two hundred lines, and it’s not enough, we’ll ask for more. Again, feel
free to replace any sensitive filenames, etc, with XXXX.

• The output of the ‘env‘ command, in the same terminal window in
which you ran Obnam. (Again, as an attachment.)

• If your bug is about performance, please run Obnam under profiling,
and attach the profiling file. To run Obnam under profiling, install the
Python profile (‘python-profiler‘ package in Debian/Ubuntu), and set
the OBNAM_PROFILE environment variable to the name of the file
with the profiling output (that’s the file you should send by mail). For
example:
OBNAM_PROFILE=obnam.prof obnam backup
would run the backup under the profiler, and write the result to
‘obnam.prof‘.

Thank you for your help in making Obnam better.

43

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 14
Obnam configuration files and settings

This chapter discusses Obnam configuration files: where they are, what they
contain, and how they are used.

Where is my configuration?

Obnam looks for its configuration files in a number of places:

• /etc/obnam.conf
• /etc/obnam/*.conf
• ∼/.obnam.conf
• ∼/.config/obnam/*.conf

Note that in ‘/etc/obnam‘ and ‘∼/.config/obnam‘, all files that have a
‘.conf‘ suffix are loaded, in "asciibetical" order, which is like alphabetical, but
based on character codes rather than what humans understand, but unlike
alphabetical isn’t dependent on the language being used.

Any files in the list above may or may not exist. If it exists, it is read, and
then the next file is read. A setting in one file can be overridden by a later
file, if it is set there as well. For example, ‘/etc/obnam.conf‘ might set ‘log-
level‘ to ‘INFO‘, but ‘∼/.obnam.conf‘ may then set it to ‘DEBUG‘, if a user
wants more detailed log files.

The Obnam configuration files in ‘/etc‘ apply to everyone who runs Obnam
on that machine. This is important: they are not just for when ‘root‘ runs
Obnam.

If you want to have several Obnam configurations, for example for different
backup repositories, you need to name or place the files so they aren’t on the
list above. For example:

• /etc/obnam/system-backup.profile
• ∼/.config/obnam/online.profile
• ∼/.config/obnam/usbdrive.profile

You would then need to specify that file for Obnam to use it:
44

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

CONFIGURATION FILE SYNTAX

obnam --config ∼/.config/obnam/usbdrive.profile

If you want to not be affected by any configuration files, except the ones you
specify explicitly, you need to also use the ‘--no-default-config‘ option:

obnam --no-default-config --config ∼/.obnam-is-fun.conf

Command line options override values from configuration files.

Configuration file syntax

Obnam configuration files use the INI file syntax, specifically the variant
implemented by the Python ConfigParser library. They look like this:

[config]
log-level = debug
log = /var/log/obnam.log
encrypt-with = CAFEBEEF
root = /
one-file-system = yes

Names of configuration variables are the same as the corresponding
command line options. If ‘--foo‘ is the option, then the variable in the file is
‘foo‘. Any command line option ‘--foo=bar‘ can be used in a configuration
file as ‘foo = bar‘. There’s are exceptions to this (‘--no-default-config‘, ‘--
config‘, ‘--help‘, and a few others), but they’re all things you wouldn’t put
in a configuration file anyway.

Every option, or setting, has a type. Mostly this doesn’t matter, unless you
give it a value that isn’t suitable. The two important exceptions to this are:

• Boolean or yes/no or on/off settings. For example, ‘--exclude-caches‘
is a setting that is either turned on (when the option is used) or off
(when it’s not used). For every boolean setting ‘--foo‘, there is an
option ‘--no-foo‘. In a configuration files, ‘foo‘ is turned on by setting
it to ‘yes‘ or ‘true‘, and off by setting it to ‘no‘ or ‘false‘.

• Some settings can be lists of values, such as ‘--exclude‘. You can use
‘--exclude‘ as many times as you want, each time a new exclusion
pattern is added, rather than replacing the previous patterns. In a
configuration file, you would write all the values at once, separated
by commas and optional spaces: for example, ‘exclude = foo, bar, baz‘.
In a configuration file, the previous list of values is replaced entirely
rather than added to.

For a more detailed explanation of Obnam configuration file syntax, see the
cliapp (5) manual page on your system, or cliapp man page on the WWW.

45

Version 2016.620– – Document LATEXed – 17th January 2016

https://en.wikipedia.org/wiki/INI_file
http://docs.python.org/2/library/configparser.html
http://liw.fi/cliapp/cliapp.5.txt

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

CHECKING WHAT MY CONFIGURATION IS

Checking what my configuration is

Obnam can read configuration files from a number of places, and it can
be tricky to figure out what the actual configuration is. The --dump-config
option helps here.

obnam --config ∼/.obnam.fun --exclude-caches --dump-config

The option will tell Obnam to write out (to the standard output) a
configuration file that captures every setting, and reporting the value that it
would have if ‘--dump-config‘ werent used.

This is a good way to see what the current settings are and also as a starting
point if you want to make a configuration file from scratch.

Finding out all the configuration settings

These can be found in The help file and The ’man’ page.

46

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 15
The backup repository internals

This chapter describes what the Obnam backup repository looks like.
Unless you’re interested in that, you can skip that entirely.

For now, look at the Obnam website at http://obnam.org/development/.

Repository file permissions

Obnam sets the permissions of all files it creates in the repository such that
only the owner of the files can read or write them. (Technically, 0600 for files,
0700 for directories.)

This is to prevent backups from leaking because someone else has read
access to the repository. There is no setting in Obnam to control this.

47

Version 2016.620– – Document LATEXed – 17th January 2016

http://obnam.org/development/

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 16
Obnam options

Obnam command line syntax consists of a command possibly followed by
arguments. The ‘arguments’ are listed below.

--version

Show the program’s version number and then exits.

-h

Shows the help message and then exits.

--help

Shows the help message and then exits.

--output=FILE

Write the output to FILE, instead of standard output.

-r REPOSITORY

The name of the backup repository.

--repository=REPOSITORY

The name of the backup repository.

48

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

--CLIENT-NAME=CLIENT-NAME

--client-name=CLIENT-NAME

The name of the client (e.g. london).

--trace=TRACE

Add to the filename patters for which trace debugging, logging happens.

--quiet

Be silent.

--no-quiet

--verbose

Be verbose.

--no-verbose

--pretend

Does not actually change anything, just a "dummy" run. Can be useful for
testing things out before you go live.

--dry-run

Does not actually change anything, just a "dummy" run. Can be useful for
testing things out before you go live.

--no-act

Does not actually change anything (works with backup, forget and restore
only, and may only simulate approximately real behaviour).

49

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

--NO-PRETEND

--no-pretend

--no-dry-run

--no-no-act

--lock-timeout=TIMEOUT

When locking in the backup repository, wait TIMEOUT seconds for an
existing lock to go away before giving up.

--compress-with=PROGRAM

Use PROGRAM to compress repository with (one of none, deflate).

--root=ROOT

What to backup.

--testing-fail-matching=REGEXP

Development testing helper: simulate failures during backup for files that
match the given regular expressions.

--warn-age=AGE

For nagios-last-backup-age: maximum age (by default in hours) for the
most recent backup before status is warning. Accepts one character unit
specifier (s,m,h,d for seconds, minutes, hours, and days).

--critical-age=AGE

For nagios-last-backup-age: maximum age (by default in hours) for the
most recent backup before statis is critical. Accepts one char unit specifier
(s,m,h,d for seconds, minutes, hours, and days.)

--to=TO

Where to restore to.

--generation=GENERATION

Which generation to restore.
50

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

--KEEP=KEEP

--keep=KEEP

Your policy for what generations to keep when forgetting.

--verify-randomly=N

Verify N files randomly from the backup (default is zero, meaning
everything).

51

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 17
Backing up

--exclude=EXCLUDE

Regular expression for pathnames to exclude from a backup (can be used
multiple times).

--exclude-caches

Exclude directories (and their subdirs) that contain a CACHEDIR.TAG file.

--no-exclude-caches

--one-file-system

Exclude directories (and their subdirs) that are in a different filesystem

--no-one-file-system

--checkpoint=SIZE

Make a checkpoint after a given SIZE (default is 1073741824).

--de-duplicate=MODE

Find duplicate data in backed up data and store it only once; three modes
are available: never de-duplicate, verify that no hash collisions happen, or
(the default) fatalistically accept the risk of collisions.

52

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

--LEAVE-CHECKPOINTS

--leave-checkpoints

Leave checkpoint generations at the end of a successful backup run.

--no-leave-checkpoints

--small-files-in-btree

Put the contents of small files directly into the per-client B-tree, instead of
separate chunk files; do not use this as it is quite bad for performance.

--no-small-files-in-btree

53

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 18
Encryption

--encrypt-with=ENCRYPT-WITH

PGP key with which to encrypt data in the backup repository.

--keyid=KEYID

PGP key id to add to/remove from the backup repository.

--weak-random

Use /dev/urandom instead of /dev/random to generate symmetric keys.

--no-weak-random

--symmetric-key-bits=SYMMETRIC-KEY-BITS

The size of symmetric key, in bits.

54

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 19
Integrity checking (fsck)

--fsck-fix

Should fsck try to fix problems?

--no-fsck-fix

--fsck-ignore-chunks

Ignore chunks when checking repository integrity, (assume all chunks exist
and are correct).

--no-fsck-ignore-chunks

--fsck-ignore-client=NAME

Do not check the repository data for cient NAME.

--fsck-last-generation-only

Check only the last generation for each client.

--no-fsck-last-generation-only

--fsck-skip-generations

Do not check any generations.

55

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

--NO-FSCK-SKIP-GENERATIONS

--no-fsck-skip-generations

--fsck-skip-dirs

Do not check anything about directories and their files.

--no-fsck-skip-dirs

--fsck-skip-files

Do not check anything about files.

--no-fsck-skip-files

--fsck-skip-per-client-b-trees

Do not check per-client B-trees.

--no-fsck-skip-per-client-b-trees

--fsck-skip-shared-b-trees

Do not check shared B-trees.

--no-fsck-skip-shared-b-trees

56

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 20
Logging

--log=FILE

Write log entries to FILE (default is to not write log files at all); use "syslog"
to log to system log, or "none" to disable logging.

--log-level=LEVEL

Log at LEVEL, one of debug, info, warning, error, critical, fatal (default:
info).

--log-max=SIZE

Rotate logs larger than SIZE, zero for never (default: 0).

--log-keep=N

Keep the last N logs (default is 10).

--log-mode=MODE

Set permissions of new log files to MODE (octal; default 0600).

57

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 21
Mounting with FUSE

--viewmode=MODE

"Single" directly mount specified generation, or "Multiple" mount all
generations as separate directories.

--fuse-opt=FUSE

Options to pass directly to Fuse.

58

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 22
Performance

--dump-memory-profile=METHOD

Make memory profiling dumps using METHOD, which is one of: none,
simple, meliae, or heapy (default: simple).

--memory-dump-interval=SECONDS

Make memory profiling dumps at least SECONDS apart.

59

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 23
Performance tweaking

--node-size=SIZE

Size of B-tree nodes on disk; only affects new B-trees so you may need to
delete a client or repository to change this for existing repositories (default:
262144).

--chunk-size=SIZE

Size of chunks of file data backed up (default: 1048576).

--upload-queue-size=SIZE

Length of upload queue for B-tree nodes (default: 128).

--lru-size=SIZE

Size of LRU cache for B-tree nodes (default: 256).

--idpath-depth=IDPATH-DEPTH

Depth of chunk id mapping.

--idpath-bits=IDPATH-BITS

Chunk id level size.

--idpath-skip=IDPATH-SKIP

Chunk id mapping lowest bits skip.
60

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

--CHUNKIDS-PER-GROUP=NUM

--chunkids-per-group=NUM

Encode NUM chunk ids per group (default: 1024).

61

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 24
SSH/SFTP

--ssh-key=FILENAME

Use FILENAME as the ssh RSA private key for sftp access (default is using
keys known to ssh-agent).

--strict-ssh-host-keys

Require that the ssh host key must be known and correct to be accepted;
default is to accept unknown keys.

--no-strict-ssh-host-keys

--ssh-known-hosts=FILENAME

Filename of the user’s known hosts file (default: /root/.ssh/known_hosts).

--pure-paramiko

Do not use openssh even if available, use paramiko only instead.

--no-pure-paramiko

62

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 25
Performance tuning

This chapter discusses ways to tune Obnam performance for various
situations. It covers the various options that can affect CPU and memory
consumptions, as well as ways to experiment to find a good set of values.

Introduction

Obnam has a number of options for performance tuning. See the manual
page for all the details. Below is an adapted excerpt of e-mails written
by Lionel Bouton of how to test various values to find a good set for your
situation. See the list archive for the e-mails: first and second.

Measurements

Tuning lru-size and/or upload-queue-size can make a significant differ-
ence in performance.

Here follows some test results for this situation:

• Data to backup stored on a btrfs volume on SSD: 155000 files, 3.66GiB.
• Local system: 64 bit Linux, Python 2.7.5, OpenSSH 6.6p1 with hpn

patches.
• Local CPU: Intel(R) Core(TM) i5-3317U CPU @ 1.70GHz (mostly idle).
• Remote system: 64bit Linux, OpenSSH 6.6p1 with hpn patches,

repository data on ext4 on standard SATA 7200rpm disk, large
memory (everything should fit in memory, only writes should hit
disk).

• Very minimal changes in the data backed up during tests so successive
backups only check for differences and backup transfers nearly no
content.

• Backup over WiFi (1ms RTT, max speed over sftp 3MB/s).

I use this command line without any configuration file:

63

Version 2016.620– – Document LATEXed – 17th January 2016

http://obnam.org/obnam.1.txt
http://obnam.org/obnam.1.txt
http://listmaster.pepperfish.net/pipermail/obnam-support-obnam.org/2014-June/003086.html
http://listmaster.pepperfish.net/pipermail/obnam-support-obnam.org/2014-June/003090.html

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

MEASUREMENTS

obnam -r sftp://obnam@SERVER/∼/repo --compress-with=
deflate --client-name=CLIENT backup DIR

During testing I added

--lru-size <l> --upload-queue-size <q>

with different <l> and <q> values.

The resident memory of the Obnam process grows steadily (probably filling
caches) until it hits a pretty stable ceiling (cache full or nothing new to put
in cache) during the backup. It raises again rapidly at the very end (during
commits/unlock/. . .). The value reported below is obtained either through
the RES column reported by the htop utility or the RSS column reported by
"ps aux" and is the max witnessed near the end of the backup.

Each combination was tested at least twice unless it was considered not
interesting after the first run. Timing seems consistent enough given the
systems involved (the system hosting the repository is often busy) and
memory usage is very consistent across runs.

Default values as fetched from __init__.py are: l=256, q=128.

Conditions Time Memory Number
of runs

default values 22m21s - 24m51s ∼260M 2
l=10000,
q=default

13m45s - 15m03s ∼332M 2

l=default, q=250 08m23s - 10m29s ∼278M 5
l=default, q=350 02m42s - 02m49s 272-276M 2
l=default, q=400 02m13s - 02m18s 268-272M 3
l=default, q=500 02m10s - 02m16s 267-272M 3
l=default, q=512 02m13s - 02m14s 265-269M 2
l=512, q=512 01m55s - 02m06s 322-326M 3
l=768, q=512 01m55s - 01m58s 397-418M 3
l=1024, q=512 01m53s - 01m55s 403-418M 3
l=2048, q=512 01m55s - 01m59s 408-410M 3
l=4096, q=512 ∼01m58s ∼419M 1
l=default, q=600 02m14s - 02m26s 269-272M 4
l=default, q=750 02m13s - 02m15s 266-272M 2
l=default, q=1000 02m19s - 02m20s ∼266M 2
l=default,
q=10000

02m23s - 02m35s ∼266M 2

So in my configuration, when nearly no data changes between backups, --
lru-size=1024 --upload-queue-size=512 is at least 11x faster than the default
configuration.

64

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

DISCUSSION

Discussion

--upload-queue-size seems to have the greatest effect without any adverse
effect (memory usage remains at the same level). For a little extra boost with
a small impact on memory usage, I can increase --lru-size to 1024.

Note that Obnam was using 100% of the CPU for most of the time in the
fastest configuration, replacing --verbose with --quiet didn’t change the
running time.

Please note that the ideal settings for my backup configuration might differ
from the ones for yours. You might get even better results after tuning of
your own.

These parameters have a nice behaviour for tuning: upload-queue-size
doesn’t seem to have much drawback if at all when being increased (it
begins to give signs of slowing down obnam at 10000 here but it might be
the performance variance inherent in my configuration) and increasing lru-
size only increases memory usage a bit without slowing things noticeably
after reaching the ideal spot.

A good rule of thumb seems to try increasing one of these parameters by 2x
or 4x and keep going at it until performance stops increasing.

Running Obnam under the Python profiler

A profiler is a program that measures where another program spends its
time. This can be very useful for finding out why the other program is slow.

Obnam can easily be run under the Python profiler. You need to have the
profiler installed. Check with your operating system or Python installation
how to achieve that. To see if you have it installed, run the following
command on the command line:

python -c ’import cProfile’

If this outputs nothing, all is well. If it outputs an error such as the following,
you have not got the profiler installed:

Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: No module named cProfiler

Once you have the profiler installed, run Obnam like this:

OBNAM_PROFILE=backup.prof obnam bsckup

This will cause the profiling data to be written to the file ‘backup.prof‘. You
can do this for any Obnam command, and write it to any file.

The profiling data is in binary form. Obnam comes with a little helper
program to transform it to a human-readable form:

65

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

RUNNING OBNAM UNDER THE PYTHON PROFILER

obnam-viewprof backup.prof | less

If you run the above command, you’ll see that the humans to whom this
is readable are programmers and circus clowns. If you can understand the
output, great! If not, it’s still useful to send that to the Obnam developers to
report a performance problem.

66

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 26
The inbuilt help

The help file

If you run ’obnam –help’ this will be displayed - Usage: obnam [options]
add-key [CLIENT-NAME]...
obnam [options] backup [DIRECTORY|URL]...
obnam [options] client-keys
obnam [options] clients
obnam [options] diff [GENERATION1] GENERATION2
obnam [options] dump-repo
obnam [options] force-lock
obnam [options] forget [GENERATION]...
obnam [options] fsck
obnam [options] generations
obnam [options] genids
obnam [options] help
obnam [options] help-all
obnam [options] kdirstat [FILE]...
obnam [options] list-keys
obnam [options] list-toplevels obnam [options] ls [FILE]...
obnam [options] mount [ROOT]
obnam [options] nagios-last-backup-age
obnam [options] remove-client [CLIENT-NAME]...
obnam [options] remove-key [CLIENT-NAME]...
obnam [options] restore [DIRECTORY]...
obnam [options] verify [DIRECTORY]...
* obnam add-key: Add a key to the repository.
* obnam backup: Backup data to repository.
* obnam client-keys: List clients and their keys in the repository.
* obnam clients: List clients using the repository.
* obnam diff: Show difference between two generations.
* obnam dump-repo: Dump (some) data structures from a repository.
* obnam force-lock: Force a locked repository to be open.

67

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE HELP FILE

* obnam forget: Forget (remove) specified backup generations.
* obnam fsck: Verify internal consistency of backup repository.
* obnam generations: List backup generations for client.
* obnam genids: List generation ids for client.
* obnam help: Print help.
* obnam help-all: Print help, including hidden subcommands.
* obnam kdirstat: List contents of a generation in kdirstat cache format.
* obnam list-keys: List keys and the repository toplevels they’re used in.
* obnam list-toplevels: List repository toplevel directories and their keys.
* obnam ls: List contents of a generation.
* obnam mount: Mount a backup repository as a FUSE filesystem.
* obnam nagios-last-backup-age: Check if the most recent generation is
recent enough.
* obnam remove-client: Remove client and its key from repository.
* obnam remove-key: Remove a key from the repository.
* obnam restore: Restore some or all files from a generation.
* obnam verify: Verify that live data and backed up data match.

Options:
--version show program’s version number and exit
-h, --help show this help message and exit
--generate-
manpage=TEMPLATE

fill in manual page TEMPLATE

--output=FILE write output to FILE, instead of standard
output

-r URL, --repository=URL name of backup repository (can be pathname
or supported URL)

--client-name=CLIENT-
NAME

name of client (defaults to hostname)

--quiet, --silent be silent: show only error messages, no
progress updates

--no-quiet, --no-silent
--verbose be verbose: tell the user more of what is

going on and generally make sure the user is
aware of what is happening or at least that
something is happening and also make sure
their screen is getting updates frequently and
that there is changes happening all the time
so they do not get bored and that they in
fact get frustrated by getting distracted by so
many updates that they will move into the
Gobi desert to live under a rock

--no-verbose
--pretend, --dry-run, --no-act do not actually change anything (works with

backup, forget and restore only, and may only
simulate approximately real behavior)

--no-pretend, --no-dry-run, --
no-no-act

68

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE HELP FILE

--lock-timeout=TIMEOUT when locking in the backup repository, wait
TIMEOUT seconds for an existing lock to go
away before giving up

--repository-
format=FORMAT

what format to use for new repositories? one
of "6", "simple"

--compress-with=PROGRAM use PROGRAM to compress repository with
(one of none, deflate)

--dump-repo-file-metadata dump metadata about files?
--no-dump-repo-file-
metadata
--warn-age=AGE for nagios-last-backup-age: maximum age

(by default in hours) for the most recent
backup before status is warning. Accepts
one char unit specifier (s,m,h,d for seconds,
minutes, hours, and days.

--critical-age=AGE for nagios-last-backup-age: maximum age
(by default in hours) for the most recent
backup before statis is critical. Accepts
one char unit specifier (s,m,h,d for seconds,
minutes, hours, and days.

--to=TO where to restore or FUSE mount
--generation=GENERATION which generation to restore
--always-restore-setuid restore setuid/setgid bits in restored files,

even if not root or backed up file had different
owner than user running restore

--no-always-restore-setuid
--keep=KEEP policy for what generations to keep when

forgetting
--verify-randomly=N verify N files randomly from the backup

(default is zero, meaning everything)

Backing up:
--root=URL what to backup
--exclude=EXCLUDE regular expression for pathnames to exclude

from backup (can be used multiple times)
--exclude-from=FILE read exclude patterns from FILE
--exclude-caches exclude directories (and their subdirs) that

contain a CACHEDIR.TAG file (see http://
www.brynosaurus.com/cachedir/spec.html for
what it needs to contain, and http://liw.fi/
cachedir/ for a helper tool)

--no-exclude-caches
--include=INCLUDE regular expression for pathnames to include

from backup even if it matches an exclude
rule (can be used multiple times)

--one-file-system exclude directories (and their subdirs) that
are in a different filesystem

--no-one-file-system
69

Version 2016.620– – Document LATEXed – 17th January 2016

http://www.brynosaurus.com/cachedir/spec.html
http://www.brynosaurus.com/cachedir/spec.html
http://liw.fi/cachedir/
http://liw.fi/cachedir/

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE HELP FILE

--checkpoint=SIZE make a checkpoint after a given SIZE
--deduplicate=MODE find duplicate data in backed up data and

store it only once; three modes are available:
never de- duplicate, verify that no hash col-
lisions happen, or (the default) fatalistically
accept the risk of collisions

--leave-checkpoints leave checkpoint generations at the end of a
successful backup run

--no-leave-checkpoints
--small-files-in-btree put contents of small files directly into the

per- client B-tree, instead of separate chunk
files; do not use this as it is quite bad for
performance

--no-small-files-in-btree

Configuration files and settings:
--dump-setting-names write out all names of settings and quit
--dump-config write out the entire current configuration
--no-default-configs clear list of configuration files to read
--config=FILE add FILE to config files
--list-config-files list all possible config files
--help-all show all options

Development of Obnam itself:
--trace=TRACE add to filename patters for which trace

debugging logging happens
--pretend-time=TIMESTAMP pretend it is TIMESTAMP (YYYY-MM-DD

HH:MM:SS); this is only useful for testing
purposes

--crash-limit=COUNTER artificially crash the program after
COUNTER files written to the repository;
this is useful for crash testing the application,
and should not be enabled for real use; set to
0 to disable (disabled by default)

--sftp-delay=SFTP-DELAY add an artificial delay (in milliseconds) to all
SFTP transfers

--testing-fail-
matching=REGEXP

development testing helper: simulate failures
during backup for files that match the given
regular expressions

Encryption:
--encrypt-with=ENCRYPT-
WITH

PGP key with which to encrypt data in the
backup repository

--keyid=KEYID PGP key id to add to/remove from the
backup repository

--weak-random use /dev/urandom instead of /dev/random
to generate symmetric keys

--no-weak-random
70

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE HELP FILE

--key-details show additional user IDs for all keys
--no-key-details
--symmetric-key-bits=BITS size of symmetric key, in bits

Integrity checking (fsck):
--fsck-fix should fsck try to fix problems? Implies --

fsck-rm-unused
--no-fsck-fix
--fsck-rm-unused should fsck remove unused chunks?
--no-fsck-rm-unused
--fsck-ignore-chunks ignore chunks when checking repository

integrity (assume all chunks exist and are
correct)

--no-fsck-ignore-chunks
--fsck-ignore-client=NAME do not check repository data for client NAME
--fsck-last-generation-only check only the last generation for each client
--no-fsck-last-generation-only
--fsck-skip-generations do not check any generations
--no-fsck-skip-generations
--fsck-skip-dirs do not check anything about directories and

their files
--no-fsck-skip-dirs
--fsck-skip-files do not check anything about files
--no-fsck-skip-files
--fsck-skip-per-client-b-trees do not check per-client B-trees
--no-fsck-skip-per-client-b-
trees
--fsck-skip-shared-b-trees do not check shared B-trees
--no-fsck-skip-shared-b-trees

Logging:
--log=FILE write log entries to FILE (default is to not

write log files at all); use "syslog" to log to
system log, or "none" to disable logging

--log-level=LEVEL log at LEVEL, one of debug, info, warning,
error, critical, fatal (default: info)

--log-max=SIZE rotate logs larger than SIZE, zero for never
(default: 25000000)

--log-keep=N keep last N logs (5)
--log-mode=MODE set permissions of new log files to MODE

(octal; default 0600)

Mounting with FUSE:
--fuse-opt=FUSE options to pass directly to Fuse

Peformance:

71

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE ’MAN’ PAGE

--dump-memory-
profile=METHOD

make memory profiling dumps using
METHOD, which is one of: none, simple,
meliae, or heapy (default: simple)

--memory-dump-
interval=SECONDS

make memory profiling dumps at least
SECONDS apart

Performance tweaking:
--node-size=SIZE size of B-tree nodes on disk; only affects

new B-trees so you may need to delete a
client or repository to change this for existing
repositories

--chunk-size=SIZE size of chunks of file data backed up
--upload-queue-size=SIZE length of upload queue for B-tree nodes
--lru-size=SIZE size of LRU cache for B-tree nodes
--idpath-depth=IDPATH-
DEPTH

depth of chunk id mapping

--idpath-bits=IDPATH-BITS chunk id level size
--idpath-skip=IDPATH-SKIP chunk id mapping lowest bits skip
--chunkids-per-group=NUM encode NUM chunk ids per group

SSH/SFTP:
--ssh-key=FILENAME use FILENAME as the ssh RSA private key

for sftp access (default is using keys known
to ssh-agent)

--strict-ssh-host-keys DEPRECATED, use --ssh-host-keys-check in-
stead

--no-strict-ssh-host-keys
--ssh-host-keys-
check=VALUE

If "yes", require that the ssh host key must
be known and correct to be accepted. If
"no", do not require that. If "ask", the user is
interactively asked to accept new hosts. The
default ("ssh-config") is to rely on the settings
of the underlying SSH client

--ssh-known-
hosts=FILENAME

filename of the user’s known hosts file

--ssh-
command=EXECUTABLE

alternative executable to be used instead of
"ssh" (full path is allowed, no arguments may
be added)

--pure-paramiko do not use openssh even if available, use
paramiko only instead

--no-pure-paramiko

The ’man’ page

OBNAM(1) - General Commands Manual - OBNAM(1)

NAME - obnam - make, restore, and manipulate backups.

72

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE ’MAN’ PAGE

SYNOPSIS - obnam makes, restores, manipulates, and otherwise deals with
backups. It can store backups on a local disk or to a server via sftp. Every
backup generation looks like a fresh snapshot, but is really incremental: the
user does not need to worry whether it’s a full backup or not. Only changed
data is backed up, and if a chunk of data is already backed up in another file,
that data is re-used.

The place where backed up data is placed is called the backup repository.
A repository may be, for example, a directory on an sftp server, or a
directory on a USB hard disk. A single repository may contain backups from
several clients. Their data will intermingle as if they were using separate
repositories, but if one client backs up a file, the others may re-use the data.

obnam command line syntax consists of a command possibly followed by
arguments. The commands are listed below.

• backup makes a new backup. The first time it is run, it makes a full
backup, after that an incremental one.

• restore is the opposite of a backup. It copies backed up data from the
backup repository to a target directory. You can restore everything in
a generation, or just selected files.

• clients lists the clients that are backed up to the repository.
• generations lists every backup generation for a given client, plus some

metadata about the generation.
• genids lists the identifier for every backup generation for a given

client. No other information is shown. This can be useful for scripting.
• ls lists the contents of a given generation, similar to ls -lAR.
• kdirstat lists the contents of a given generation, in a format which is

compatible with the kdirstat cache file format, which can then be used
to visualise the contents of a backup.

• verify compares data in the backup with actual user data, and makes
sure they are identical. It is most useful to run immediately after a
backup, to check that it actually worked. It can be run at any time, but
if the user data has changed, verification fails even though the backup
is OK.

• forget removes backup generations that are no longer wanted, so that
they don’t use disk space. Note that after a backup generation is
removed the data can’t be restored anymore. You can either specify
the generations to remove by listing them on the command line, or
use the --keep option to specify a policy for what to keep (everything
else will be removed).

• fsck checks the internal consistency of the backup repository. It
verifies that all clients, generations, directories, files, and all file
contents still exists in the backup repository. It may take quite a long
time to run.

• force-lock removes a lock file for a client in the repository. You should
only force a lock if you are sure no-one is accessing that client’s data in
the repository. A dangling lock might happen, for example, if obnam
loses its network connection to the backup repository.

73

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE ’MAN’ PAGE

• client-keys lists the encryption key associated with each client.
• list-keys lists the keys that can access the repository, and which

toplevel directories each key can access. Some of the toplevel
directories are shared between clients, others are specific to a client.

• list-toplevels is like list-keys, but lists toplevels and which keys can
access them.

• add-key adds an encryption key to the repository. By default, the
key is added only to the shared toplevel directories, but it can also be
added to specific clients: list the names of the clients on the command
line. The key is given with the --keyid option. Whoever has access
to the secret key corresponding to the key id can access the backup
repository (the shared toplevels plus specified clients).

• remove-key removes a key from the shared toplevel directories, plus
any clients specified on the command line.

• nagios-last-backup-age is a check that exits with non-zero return if
a backup age exceeds a certain threshold. It is suitable for use as a
check plugin for nagios. Thresholds can be given the --warn-age and
--critical-age options.

• diff compares two generations and lists files differing between them.
Every output line will be prefixed either by a plus sign (+) for files
that were added, a minus sign (-) for files that have been removed or
an asterisk (*) for files that have changed. If only one generation ID
is specified on the command line that generation will be compared
with its direct predecessor. If two IDs have been specified, all changes
between those two generations will be listed.

• mount makes the backup repository available via a read-only FUSE
filesystem. Each backup generation is visible as a subdirectory, named
after the generation id. This means you can look at backed up data
using normal tools, such as your GUI file manager, or command line
tools such as ls(1), diff(1), and cp(1). You can’t make new backups with
the mount subcommand, but you can restore data easily.

You need to have the FUSE utilities and have permission to use FUSE for
this to work. The details will vary between operating systems; in Debian,
install the package fuse and add yourself to the fuse group (you may need
to log out and back in again).

Making backups

When you run a backup, obnam uploads data into the backup repository.
The data is divided into chunks, and if a chunk already exists in the backup
repository, it is not uploaded again. This allows obnam to deal with files that
have been changed or renamed since the previous backup run. It also allows
several backup clients to avoid uploading the same data. If, for example,
everyone in the office has a copy of the same sales brochures, only one copy
needs to be stored in the backup repository.

74

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE ’MAN’ PAGE

Every backup run is a generation. In addition, obnam will make checkpoint
generations every now and then. These are exactly like normal generations,
but are not guaranteed to be a complete snapshot of the live data. If the
backup run needs to be aborted in the middle, the next backup run can
continue from the latest checkpoint, avoiding the need to start over from
scratch.

If one backup run drops a backup root directory, the older generations will
still keep it: nothing changes in the old generations just because there is a
new one. If the root was dropped by mistake, it can be added back and the
next backup run will re-use the existing data in the backup repository, and
will only back up the file metadata (filenames, permissions, etc).

Verifying backups

What good is a backup system you cannot rely on? How can you rely on
something you cannot test? The obnam verify command checks that data in
the backup repository matches actual user data. It retrieves one or more files
from the repository and compares them to the user data. This is essentially
the same as doing a restore, then comparing restored files with the original
files using cmp(1), but easier to use.

By default, verification happens on all files. You can also specify the files to
be verified by listing them on the command line. You should specify the full
paths to the files, not relative to the current directory.

The output lists files that fail verification for some reason. If you verify
everything, it is likely that some files (e.g., parent directories of backup root)
may have changed without it being a problem. Note that you will need to
specify the whole path to the files or directories to be verified, not relative
to the backup root. You still need to specify at least one of the backup roots
on the command line or via the --root option so that obnam will find the
filesystem, in case it is a remote one.

URL syntax

Whenever obnam accepts a URL, it can be either a local pathname, or an
sftp URL. An sftp URL has the following form:

sftp://[user@]domain[:port]/path

where domain is a normal Internet domain name for a server, user is your
username on that server, port is an optional port number, and path is a
pathname on the server side. Like bzr(1), but unlike the sftp URL standard,
the pathname is absolute, unless it starts with / / in which case it is relative
to the user’s home directory on the server.

See the EXAMPLE section for examples of URLs.

75

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE ’MAN’ PAGE

You can use sftp URLs for the repository, or the live data (root), but note that
due to limitations in the protocol, and its implementation in the paramiko
library, some things will not work very well for accessing live data over sftp.
Most importantly, the handling of of hardlinks is rather suboptimal. For live
data access, you should not end the URL with / / and should append a dot
at the end in this special case.

Generation specifications

When not using the latest generation, you will need to specify which one
you need. This will be done with the –generation option, which takes a
generation specification as its argument. The specification is either the word
latest, meaning the latest generation (also the default), or a number. See the
generations command to see what generations are available, and what their
numbers are.

Policy for keeping and removing backup generations

The forget command can follow a policy to automatically keep some and
remove other backup generations. The policy is set with the --keep=POLICY
option.

POLICY is comma-separated list of rules. Each rule consists of a count and
a time period. The time periods are h, d, w, m, and y, for hour, day, week,
month, and year.

A policy of 30d means to keep the latest backup for each day when a backup
was made, and keep the last 30 such backups. Any backup matched by any
policy rule is kept, and any backups in between will be removed, as will any
backups older than the oldest kept backup.

As an example, assume backups are taken every hour, on the hour: at 00:00,
01:00, 02:00, and so on, until 23:00. If the forget command is run at 23:15,
with the above policy, it will keep the backup taken at 23:00 on each day,
and remove every other backup that day. It will also remove backups older
than 30 days.

If backups are made every other day, at noon, forget would keep the 30 last
backups, or 60 days worth of backups, with the above policy.

Note that obnam will only inspect timestamps in the backup repository, and
does not care what the actual current time is. This means that if you stop
making new backups, the existing ones won’t be removed automatically.
In essence, obnam pretends the current time is just after the latest backup
when forget is run.

The rules can be given in any order, but will be sorted to ascending order
of time period before applied. (It is an error to give two rules for the same
period.) A backup generation is kept if it matches any rule.

76

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

THE ’MAN’ PAGE

For example, assume the same backup frequency as above, but a policy of
30d,52w. This will keep the newest daily backup for each day for thirty days,
and the newest weekly backup for 52 weeks. Because the hourly backups
will be removed daily, before they have a chance to get saved by a weekly
rule, the effect is that the 23:00 o’clock backup for each day is saved for a
month, and the 23:00 backup on Sundays is saved for a year.

If, instead, you use a policy of 72h,30d,52w, obnam would keep the last 72
hourly backups, and the last backup of each calendar day for 30 days, and
the last backup of each calendar week for 52 weeks. If the backup frequency
was once per day, obnam would keep the backup of each calendar hour for
which a backup was made, for 72 such backups. In other words, it would
effectively keep the last 72 daily backups.

Sound confusing? Just think how confused the developer was when writing
the code.

If no policy is given, forget will keep everything.

A typical policy might be 72h,7d,5w,12m, which means: keep the last 72
hourly backups, the last 7 daily backups, the last 5 weekly backups and the
last 12 monthly backups. If the backups are systematically run on an hourly
basis, this will mean keeping hourly backups for three days, daily backups
for a week, weekly backups for a month, and monthly backups for a year.

The way the policy works is a bit complicated. Run forget with the --pretend
option to make sure you’re removing the right ones.

Using encryption

obnam can encrypt all the data it writes to the backup repository. It uses
gpg(1) to do the encryption. You need to create a key pair using gpg --
gen-key (or use an existing one), and then tell obnam about it using the
--encrypt-with option.

Configuration files

obnam will look for configuration files in a number of locations. See the
FILES section for a list. All these files together are treated as one big file
with the contents of all files concatenated.

The files are in INI format, and only the [config] section is used (any other
sections are ignored).

The long names of options are used as keys for configuration variables. Any
setting that can be set from the command line can be set in a configuration
file, in the [config] section.

For example, the options in the following command line:

obnam --repository=/backup --exclude=’.wav$’ backup

77

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

could be replaced with the following configuration file:

[config]
repository: /backup
exclude: .wav$

(You can use either foo=value or foo: value syntax in the files.)

The only unusual thing about the files is the way options that can be
used many times are expressed. All values are put in a single logical line,
separated by commas (and optionally spaces as well). For example:

[config]
exclude = foo, bar, ṁp3$

The above has three values for the exclude option: any files that contain
the words foo or bar anywhere in the fully qualified pathname, or files with
names ending with a period and mp3 (because the exclusions are regular
expressions).

A long logical line can be broken into several physical ones, by starting a
new line at white space, and indenting the continuation lines:

[config]
exclude = foo,
bar,
ṁp3$

The above example adds three exclusion patterns.

Multiple clients and locking

obnam supports sharing a repository between multiple clients. The clients
can share the file contents (chunks), so that if client A backs up a large file,
and client B has the same file, then B does not need to upload the large file
to the repository a second time. For this to work without confusion, the
clients use a simple locking protocol that allows only one client at a time to
modify the shared data structures. Locks do not prevent read-only access at
the same time: this allows you to restore while someone else is backing up.

Sometimes a read-only operation happens to access a data structure at the
same time as it is being modified. This can result in a crash. It will not result
in corrupt data, or incorrect restores. However, you may need to restart the
read-only operation after a crash.

OPTIONS
78

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

--always-restore-setuid restore setuid/setgid bits in restored files,
even if not root or backed up file had different
owner than user running restore

--client-name=CLIENT-
NAME

name of client (defaults to hostname)

--compress-with=PROGRAM use PROGRAM to compress repository with
(one of none, deflate)

--critical-age=AGE for nagios-last-backup-age: maximum age
(by default in hours) for the most recent
backup before statis is critical. Accepts
one char unit specifier (s,m,h,d for seconds,
minutes, hours, and days.

--dump-repo-file-metadata dump metadata about files?
--generate-
manpage=TEMPLATE

SUPPRESSHELP

--generation=GENERATION which generation to restore
-h, --help show this help message and exit
--keep=KEEP policy for what generations to keep when

forgetting
--lock-timeout=TIMEOUT when locking in the backup repository, wait

TIMEOUT seconds for an existing lock to go
away before giving up

--no-always-restore-setuid
--no-dump-repo-file-
metadata
--no-pretend, --no-dry-run, --
no-no-act
--no-quiet, --no-silent
--no-verbose
--output=FILE write output to FILE, instead of standard

output
--pretend, --dry-run, --no-act do not actually change anything (works with

backup, forget and restore only, and may only
simulate approximately real behavior)

--quiet, --silent be silent: show only error messages, no
progress updates

-r, --repository=URL name of backup repository (can be pathname
or supported URL)

--repository-
format=FORMAT

what format to use for new repositories? one
of "6", "simple"

--to=TO where to restore or FUSE mount

79

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

--verbose be verbose: tell the user more of what is
going on and generally make sure the user is
aware of what is happening or at least that
something is happening and also make sure
their screen is getting updates frequently and
that there is changes happening all the time
so they do not get bored and that they in
fact get frustrated by getting distracted by so
many updates that they will move into the
Gobi desert to live under a rock

--verify-randomly=N verify N files randomly from the backup
(default is zero, meaning everything)

--version show program’s version number and exit
--warn-age=AGE for nagios-last-backup-age: maximum age

(by default in hours) for the most recent
backup before status is warning. Accepts
one char unit specifier (s,m,h,d for seconds,
minutes, hours, and days.

Backing up
--checkpoint=SIZE make a checkpoint after a given SIZE
--deduplicate=MODE find duplicate data in backed up data and

store it only once; three modes are available:
never de-duplicate, verify that no hash col-
lisions happen, or (the default) fatalistically
accept the risk of collisions

--exclude=EXCLUDE regular expression for pathnames to exclude
from backup (can be used multiple times)

--exclude-caches exclude directories (and their subdirs) that
contain a CACHEDIR.TAG file (see http://
www.brynosaurus.com/cachedir/spec.html for
what it needs to contain, and http://liw.fi/
cachedir/ for a helper tool)

--exclude-from=FILE read exclude patterns from FILE
--include=INCLUDE regular expression for pathnames to include

from backup even if it matches an exclude
rule (can be used multiple times)

--leave-checkpoints leave checkpoint generations at the end of a
successful backup run

--no-exclude-caches
--no-leave-checkpoints
--no-one-file-system
--no-small-files-in-btree
--one-file-system exclude directories (and their subdirs) that

are in a different filesystem
--root=URL what to backup

80

Version 2016.620– – Document LATEXed – 17th January 2016

http://www.brynosaurus.com/cachedir/spec.html
http://www.brynosaurus.com/cachedir/spec.html
http://liw.fi/cachedir/
http://liw.fi/cachedir/

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

--small-files-in-btree put contents of small files directly into the
per-client B-tree, instead of separate chunk
files; do not use this as it is quite bad for
performance

Configuration files and settings
--config=FILE add FILE to config files
--dump-config write out the entire current configuration
--dump-setting-names SUPPRESSHELP
--help-all show all options
--list-config-files SUPPRESSHELP
--no-default-configs clear list of configuration files to read

Development of Obnam itself
--crash-limit=COUNTER artificially crash the program after

COUNTER files written to the repository;
this is useful for crash testing the application,
and should not be enabled for real use; set to
0 to disable (disabled by default)

--pretend-time=TIMESTAMP pretend it is TIMESTAMP (YYYY-MM-DD
HH:MM:SS); this is only useful for testing
purposes

--sftp-delay=SFTP-DELAY add an artificial delay (in milliseconds) to all
SFTP transfers

--testing-fail-
matching=REGEXP

development testing helper: simulate failures
during backup for files that match the given
regular expressions

--trace=TRACE add to filename patters for which trace
debugging logging happens

Encryption
--encrypt-with=ENCRYPT-
WITH

PGP key with which to encrypt data in the
backup repository

--key-details show additional user IDs for all keys
--keyid=KEYID PGP key id to add to/remove from the

backup repository
--no-key-details
--no-weak-random
--symmetric-key-bits=BITS size of symmetric key, in bits
--weak-random use /dev/urandom instead of /dev/random

to generate symmetric keys

Integrity checking (fsck)
--fsck-fix should fsck try to fix problems? Implies --

fsck-rm-unused

81

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

--fsck-ignore-chunks ignore chunks when checking repository
integrity (assume all chunks exist and are
correct)

--fsck-ignore-client=NAME do not check repository data for client NAME
--fsck-last-generation-only check only the last generation for each client
--fsck-rm-unused should fsck remove unused chunks?
--fsck-skip-dirs do not check anything about directories and

their files
--fsck-skip-files do not check anything about files
--fsck-skip-generations do not check any generations
--fsck-skip-per-client-b-trees do not check per-client B-trees
--fsck-skip-shared-b-trees do not check shared B-trees
--no-fsck-fix
--no-fsck-ignore-chunks
--no-fsck-last-generation-only
--no-fsck-rm-unused
--no-fsck-skip-dirs
--no-fsck-skip-files
--no-fsck-skip-generations
--no-fsck-skip-per-client-b-
trees
--no-fsck-skip-shared-b-trees

Logging
--log=FILE write log entries to FILE (default is to not

write log files at all); use "syslog" to log to
system log, or "none" to disable logging

--log-keep=N keep last N logs (10)
--log-level=LEVEL log at LEVEL, one of debug, info, warning,

error, critical, fatal (default: info)
--log-max=SIZE rotate logs larger than SIZE, zero for never

(default: 0)
--log-mode=MODE set permissions of new log files to MODE

(octal; default 0600)

Mounting with FUSE
--fuse-opt=FUSE options to pass directly to Fuse

Peformance
--dump-memory-
profile=METHOD

make memory profiling dumps using
METHOD, which is one of: none, simple,
meliae, or heapy (default: simple)

--memory-dump-
interval=SECONDS

make memory profiling dumps at least
SECONDS apart

Performance tweaking
--chunk-size=SIZE size of chunks of file data backed up

82

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

--chunkids-per-group=NUM encode NUM chunk ids per group
--idpath-bits=IDPATH-BITS chunk id level size
--idpath-depth=IDPATH-
DEPTH

depth of chunk id mapping

--idpath-skip=IDPATH-SKIP chunk id mapping lowest bits skip
--lru-size=SIZE size of LRU cache for B-tree nodes
--node-size=SIZE size of B-tree nodes on disk; only affects

new B-trees so you may need to delete a
client or repository to change this for existing
repositories

--upload-queue-size=SIZE length of upload queue for B-tree nodes

SSH/SFTP
--no-pure-paramiko
--no-strict-ssh-host-keys
--pure-paramiko do not use openssh even if available, use

paramiko only instead
--ssh-
command=EXECUTABLE

alternative executable to be used instead of
"ssh" (full path is allowed, no arguments may
be added)

--ssh-host-keys-
check=VALUE

If "yes", require that the ssh host key must
be known and correct to be accepted. If
"no", do not require that. If "ask", the user is
interactively asked to accept new hosts. The
default ("ssh-config") is to rely on the settings
of the underlying SSH client

--ssh-key=FILENAME use FILENAME as the ssh RSA private key
for sftp access (default is using keys known
to ssh-agent)

--ssh-known-
hosts=FILENAME

filename of the user’s known hosts file

--strict-ssh-host-keys DEPRECATED, use –ssh-host-keys-check in-
stead

Option values The SIZE value in options mentioned above
specifies a size in bytes, with optional suf-
fixes to indicate kilobytes (k), kibibytes (Ki),
megabytes (M), mebibyts (Mi), gigabytes (G),
gibibytes (Gi), terabytes (T), tibibytes (Ti).
The suffixes are case-insensitive.

EXIT STATUS

obnam will exit with zero if everything went well, and non-zero otherwise.

83

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

ENVIRONMENT

obnam will pass on the environment it gets from its parent, without
modification. It does not obey any unusual environment variables, but
it does obey the usual ones when running external programs, creating
temporary files, etc.

FILES

/etc/obnam.conf
/etc/obnam/*.conf
/.obnam.conf
/.config/obnam/*.conf

Configuration files for obnam. It is not an error for any or all of the files to
not exist.

EXAMPLE

To back up your home directory to a server:

obnam backup --repository sftp://your.server/ /backups $HOME

To restore your latest backup from the server:

obnam restore --repository sftp://your.server/ /backups --to /var/tm-
p/my.home.dir

To restore just one file or directory:

obnam restore --repository sftp://your.server/ /backups --to /var/tm-
p/my.home.dir $HOME/myfile.txt

Alternatively, mount the backup repository using the FUSE filesystem (note
that the --to option is necessary):

mkdir my-repo
obnam mount --repository sftp://your.server/ /backups -to my-repo
cp my-repo/latest/$HOME/myfile.txt
fusermount -u my-repo

To check that the backup worked:

obnam verify --repository sftp://your.server/ /backups /path/to/file

To remove old backups, keeping the newest backup for each day for ten
years:

84

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

OPTIONS

obnam forget --repository sftp://your.server/ /backups -keep 3650d

To verify that the backup repository is OK:

obnam fsck --repository sftp://your.server/ /backups

To view the backed up files in the backup repository using FUSE:

obnam mount --to my-fuse
ls -lh my-fuse
fusermount -u my-fuse

SEE ALSO

obnam comes with a manual in HTML and PDF forms. See /us-
r/share/doc/obnam if you have Obnam installed system-wide, or in the
subdirectory manual in the source tree.

cliapp(5)

85

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 27
Errors - code and names

By error code

R018FCX - ToplevelIsFileError
R01F56X - RepositorySettingMissingError
R02C17X - HardlinkError
R0B15DX - RepositoryGenerationDoesNotExist
R0BE94X - RepositoryClientNotLocked
R0C79EX - GpgError
R0F22CX - URLSchemeAlreadyRegisteredError
R0FC21X - SetMetadataError
R169C6X - MissingFilterError
R173AEX - NoFilterTagError
R1A025X - RepositoryClientKeyNotAllowed
R1CA00X - ClientDoesNotExistError
R22E66X - SizeSyntaxError
R24424X - RepositoryClientDoesNotExist
R283A6X - UnitNameError
R2FA37X - WrongNumberOfGenerationSettingsError
R338F2X - BackupRootMissingError
R3B42AX - WrongNumberOfGenerationsForVerify
R3E151X - RepositoryFileDoesNotExistInGeneration
R3E1C1X - RestoreTargetNotEmpty
R41CE6X - RepositoryClientAlreadyExists
R43272X - RepositoryChunkDoesNotExist
R45B50X - DuplicatePeriodError
R47416X - WrongHostKeyError
R4C3BCX - BackupErrors
R57207X - RepositoryClientGenerationUnfinished
R5914DX - InvalidPortError
R5F98AX - NoHostKeyError
R681AEX - LockFail
R6A098X - RepositoryGenerationKeyNotAllowed

86

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BY NAME

R6C1C8X - RepositoryClientListNotLocked
R6EAF2X - RepositoryClientLockingFailed
R7137EX - BagIdNotSetError
R79699X - RepositoryFileKeyNotAllowed
R79ED6X - BackupRootDoesNotExist
R7B8D0X - FileNotFoundError
R826A1X - UnknownVFSError
R8AAC1X - NoHostKeyOfWantedTypeError
R8F974X - RepositoryChunkIndexesLockingFailed
R91CA1X - ShowFirstGenerationError
R9808DX - ForgetPolicySyntaxError
RA4F35X - RootIsNotADirectory
RA5942X - WrongNumberOfGenerationsForDiffError
RA7D64X - UnknownRepositoryFormatWanted
RA881CX - RepositoryChunkContentNotInIndexes
RA920EX - NotARepository
RABC26X - FuseModuleNotFoundError
RB1048X - RepositoryClientListLockingFailed
RB4324X - GAImmutableError
RB8E98X - WrongURLSchemeError
RB927BX - SeparatorError
RBF6DDX - RepositoryAccessError
RCB0CAX - KeyAuthenticationError
RCE08AX - ObnamIOError
RCEF5CX - MallocError
RD5FA4X - ObnamSystemError
RD6259X - RestoreErrors
RDF30DX - Fail
RE187FX - RepositoryChunkIndexesNotLocked
REFB32X - RepositoryClientHasNoGenerations
RF4EFDX - UnknownRepositoryFormat

By name

BackupErrors - R4C3BCX - There were errors during the backup
BackupRootDoesNotExist - R79ED6X - Backup root does not exist or is not

a directory: root
BackupRootMissingError - R338F2X - No backup roots specified
BagIdNotSetError - R7137EX - Bag id not set: cannot append a blob

(programming error)
ClientDoesNotExistError - R1CA00X - Client client does not exist in

repository repo
DuplicatePeriodError - R45B50X - Forget policy may not duplicate period

(period): policy
Fail - RDF30DX - filename: reason
FileNotFoundError - R7B8D0X - FUSE: File not found: filename
ForgetPolicySyntaxError - R9808DX - Forget policy syntax error: policy

87

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BY NAME

FuseModuleNotFoundError - RABC26X - Failed to load module "fuse", try
installing python-fuse

GAImmutableError - RB4324X - Attempt to modify an immutable GADi-
rectory

GpgError - R0C79EX - gpg failed with exit code returncode: stderr
HardlinkError - R02C17X - Cannot hardlink on SFTP; sorry

This is due to a limitation in the Python paramiko library that Obnam
uses for SSH/SFTP access.

InvalidPortError - R5914DX - Invalid port number port in url: error
KeyAuthenticationError - RCB0CAX - Can’t authenticate to SSH server

using key
LockFail - R681AEX - Couldn’t create lock lock_name: reason
MallocError - RCEF5CX - malloc out of memory while calling function
MissingFilterError - R169C6X - Unknown filter tag: tagname
NoFilterTagError - R173AEX - No filter tag found
NoHostKeyError - R5F98AX - No known host key for hostname
NoHostKeyOfWantedTypeError - R8AAC1X - No known type key_type

host key for hostname
NotARepository - RA920EX - url does not seem to be an Obnam repository
ObnamIOError - RCE08AX - I/O error: filename: errno: strerror
ObnamSystemError - RD5FA4X - System error: filename: errno: strerror
RepositoryAccessError - RBF6DDX - Repository does not exist or cannot

be accessed: error
RepositoryChunkContentNotInIndexes - RA881CX - Repository chunk

indexes do not contain content
RepositoryChunkDoesNotExist - R43272X - Repository doesn’t contain

chunk chunk_id. It is expected at filename
RepositoryChunkIndexesLockingFailed - R8F974X - Repository chunk in-

dexes are already locked
RepositoryChunkIndexesNotLocked - RE187FX - Repository chunk in-

dexes are not locked
RepositoryClientAlreadyExists - R41CE6X - Repository client

client_name already exists
RepositoryClientDoesNotExist - R24424X - Repository client client_name

does not exist
RepositoryClientGenerationUnfinished - R57207X - Cannot start new

generation for client_name: previous one is not finished yet
(programming error)

RepositoryClientHasNoGenerations - REFB32X - Client client_name has
no generations

RepositoryClientKeyNotAllowed - R1A025X - Client client_name uses
repository format format which does not allow the key key_name to
be use for clients

RepositoryClientListLockingFailed - RB1048X - Repository client list
could not be locked

RepositoryClientListNotLocked - R6C1C8X - Repository client list is not
locked

88

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BY NAME

RepositoryClientLockingFailed - R6EAF2X - Repository client
client_name could not be locked

RepositoryClientNotLocked - R0BE94X - Repository client client_name is
not locked

RepositoryFileDoesNotExistInGeneration - R3E151X - Client
client_name, generation genspec does not have file filename

RepositoryFileKeyNotAllowed - R79699X - Client client_name uses repos-
itory format format which does not allow the key key_name to be use
for files

RepositoryGenerationDoesNotExist - R0B15DX - Cannot find requested
generation gen_id!r for client client_name

RepositoryGenerationKeyNotAllowed - R6A098X - Client client_name
uses repository format format which does not allow the key key_name
to be used for generations

RepositorySettingMissingError - R01F56X - No –repository setting. You
need to specify it on the command line or a configuration file

RestoreErrors - RD6259X - There were errors when restoring
See previous error messages for details.

RestoreTargetNotEmpty - R3E1C1X - The restore –to directory (to) is not
empty.

RootIsNotADirectory - RA4F35X - baseurl is not a directory, but a VFS root
must be a directory

SeparatorError - RB927BX - Forget policy must have rules separated by
commas, see position position: policy

SetMetadataError - R0FC21X - filename: Couldn’t set metadata metadata:
errno: strerror

ShowFirstGenerationError - R91CA1X - Can’t show first generation. Use
’obnam ls’ instead

SizeSyntaxError - R22E66X - "size" is not a valid size
ToplevelIsFileError - R018FCX - File at repository root: filename
URLSchemeAlreadyRegisteredError - R0F22CX - VFS URL scheme

scheme already registered
UnitNameError - R283A6X - "unit" is not a valid unit
UnknownRepositoryFormat - RF4EFDX - Unknown format format at url
UnknownRepositoryFormatWanted - RA7D64X - Unknown format for-

mat requested
UnknownVFSError - R826A1X - Unknown VFS type: url
WrongHostKeyError - R47416X - SSH server hostname offered wrong

public key
Note that this may due to an obsolete host key in your "known hosts"
file. If so, use "ssh-key -R" to remove it. However, it can also be a sign
that someone is trying to hijack your connection to your server, and
you should be careful.

WrongNumberOfGenerationSettingsError - R2FA37X - The restore com-
mand wants exactly one generation option

WrongNumberOfGenerationsForDiffError - RA5942X - Need one or two
generations

89

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

BY NAME

WrongNumberOfGenerationsForVerify - R3B42AX - verify must be given
exactly one generation

WrongURLSchemeError - RB8E98X - SftpFS used with non-sftp URL: url

90

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 28
See Also

This chapter gives pointers to more information about Obnam, backups,
and related things. For the time being, this is a very short list, but
suggestions for things to add to it are very much welcome.

• Obnam home page: http://obnam.org
- There are short tutorials, download links, an FAQ, contact
information, etc, here.

• Lars Wirzenius, interesting blog tags.
- http://blog.liw.fi/tag/backups/
- http://blog.liw.fi/tag/obnam/

• Cache directory tag standard: http://www.bford.info/cachedir/
- http://liw.fi/cachedir/ is a utility to manage the tag files

91

Version 2016.620– – Document LATEXed – 17th January 2016

http://obnam.org
http://blog.liw.fi/tag/backups/
http://blog.liw.fi/tag/obnam/
http://www.bford.info/cachedir/
http://liw.fi/cachedir/

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 29
Legal stuff

This entire work is covered by the GNU General Public License, version 3
or later.

Copyright 2010-2013 Lars Wirzenius

"This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses/".

A copy of the GPL is included in the file ‘COPYING‘ in the source tree, and
can be found at the URL above.

This manual (all the contents of the ‘manual‘ subdirectory in the source
tree) is additionally licensed under a Creative Commons Attribution 4.0
International License. You can choose whether to use the GPL or the CC
license for the manual.

A copy of the Creative Commons license is included in the file ‘CC-
BY-SA-4.0.txt‘ in the source tree, and can be viewed online at http://
creativecommons.org/licenses/by-sa/4.0/legalcode.

92

Version 2016.620– – Document LATEXed – 17th January 2016

http://www.gnu.org/licenses/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 30
Supporting Obnam development

Obnam is free software: you get full access to the source code, you can
modify the software as you wish, and you can distribute copies of the
software in its original or modified form. It is also free of charge.

One of the goals of Obnam is to make sure everyone has access to nice
backup software, and are not beholden to anyone else for that software. You
can use Obnam, and store your backups anywhere that suits you, and the
Obnam developers have no say in that.

However, Obnam development requires some resources. Obnam is
primarily developed by Lars Wirzenius, its original author (hi!), in his free
time. If you would like to help support Obnam development, here’s a list of
things you could do:

• Send fixes and improvements, either to code or documentation.
• Donate something to the author. See http://obnam.org/donate/ for

suggestions.
• Hire the author to do some Obnam development. Contact him

privately by e-mail liw@liw.fi.

Note that any of these are optional. If you like Obnam, and are happy just
using it, that’s completely OK.

93

Version 2016.620– – Document LATEXed – 17th January 2016

http://obnam.org/donate/
liw@liw.fi

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Chapter 31
News

This file summarizes changes between releases of Obnam.

NOTE: Obnam has an EXPERIMENTAL repository format under develop-
ment, called ‘green-albatross‘. It is NOT meant for real use. It is likely to
change in incompatible ways without warning. Do not use it unless you’re
willing to lose your backup.

Version 1.19, released 2016-01-15

Bug fixes:

* Backup no longer ignores a closed SSH connection. This means it won’t
keep trying to use it, forever. Instead, it crashes and terminates the backup.

* The Paramiko SSH implementation, which Obnam uses, changed the
interface to the ‘prefetch‘ method in its 1.16 version. Obnam can now deal
with either variant of the method. Found and reported by Kyle Manna, who
provided a patch that Lars Wirzenius rewrote to be backwards compatible
to older versions of Paramiko.

Improvements to the manual:

* The manual now has an appendix listing all Obnam errors, with codes and
explanations. This will need to be updated manually from time to time.

* The manual now has sections on turning on full debug logging and
reporting problems.

Improvements to functionality:

* The output of ‘obnam generations‘ now show time zone. Lars Wirzenius
implemented based on suggestion by Limdi.

Version 1.18.2, released 2015-11-15

Bug fixes:

94

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* The ‘–exclude-caches‘ option now works correctly again. Prevoiusly it
would exclude a cache directory, but would scan through and back up the
contents of the cache directory. As a result, the backup generation would be
much bigger, but have hidden files, not visible in the output of ‘obnam ls‘.
To fix that, remove any generations made with Obnam 1.18 or 1.18.1.

This will affect other exclusions as well.

Version 1.18.1, released 2015-11-06

Bug fixes:

* The ‘–quiet‘ option now disables the statistics reports at the end of a backup
run.

Version 1.18, released 2015-11-04

Bug fixes:

* William Boughton fixed parsing for sftp URLs with IPv6 addresses.
Previously, ‘sftp://[::1]‘ would be interpreted by Obnam as an address ‘[‘
followed by the port ‘:1]‘, but now it is correctly interpreted as the adddress
‘::1‘ and no explicit port.

* Ian Campbell fixed a bug in the kdirstat plugin, improving the handling of
unknown file types.

* Lars Wirzenius changed the ‘scan_tree‘ code to not be recursive, to avoid
problems with directory trees that are deeper than Python’s call stack limit
allows.

Minor changes:

* Lars Wirzenius added support for a multiline progress message during
backup. Version 0.24 or newer of ‘ttystatus‘ is needed for this, but Obnam
will work with an older version by displaying the same single-line progress
message as before.

* Ben Boeckel added the ‘–gnupghome‘ setting so that Obnam can be
configured to use a separate GnuPG (gpg) configuration directory.

* Henri Sivonen improved the compression code to not compress if the result
would be larger.

Version 1.17, released 2015-09-12

* Luká Poláek added the ‘–fsck-skip-checksums‘ setting to greatly speed up
‘obnam fsck‘.

* Lars Wirzenius fixed a bug that caused Obnam to sometimes back up the
parent of the backup live data root. In other words, if running ‘obnam
backup /HOME/important‘, then Obnam might backup the whole of the
home directory, instead of just the important subdirectory.

95

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Version 1.16, released 2015-09-06

* Fixed another typo in a variable name ("netloc"), found by Benedikt
Neuffer.

* Fixed a lot of missing module imports, unnecessary module imports, and
other minor bugs and style issues found by pylint. Pylint now gets run
automatically by the test suite.

This includes a fix in ‘exclude_pathnames_plugin.py‘ to add a missing
import and fix variable namaes, by Diane Trout. A similar fix was also
contributed by Mesar Hameed.

* Luká Poláek fixed an unlocking problem when GnuPG fails during an
Obnam run. The lock should now be removed rather than left behind.

Version 1.15, released 2015-08-19

* Fixed a typo in a variable name ("netloc"), found by Dirk.

Version 1.14, released 2015-08-14

Bug fixes:

* Since 1.9, Obnam has had trouble with sftp URLs for backup roots,
particularly for URLs specifying the server’s root directory. Dennis
Jacobfeuerborn found the reason: the backup plugin was treating URLs as
filenames. This should now be fixed.

Version 1.13, released 2015-08-01

Bug fixes:

* Luká Poláek found and fixed a repository corruption problem: if ‘obnam
forget‘ was interrupted at the wrong moment, it might remove a chunk, but
not the reference to it. This would case a future run of ‘obnam forget‘ to
crash due to a missing chunk (error code R43272X). ‘obnam forget‘ will now
ignore such a missing chunk, since it would’ve deleted it anyway.

Lars Wirzenius then changed things so that chunk files are only removed
once references to the chunks have been committed.

Improvements:

* ‘obnam forget‘ now commits changes after each generation it has removed.
This means that if the operation is committed, less work is lost. Suggested
by Luká Poláek, re-implemented by Lars Wirzenius.

Version 1.12, released 2015-07-08

Bug fixes:

96

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* Steven Monai reported that using ‘–one-file-system‘ would crash, and it
turned out to be a missing import.

* Jan Niggemann reported that ‘–exclude-caches‘ no longer worked. This
was due to a bug introduced when the option was moved to its own plugin
(for cleaner code). The bug was masked by another bug, in the Yarn test
suite. Both bugs have now been fixed.

Improvements:

* Jan Niggemann translated the Obnam manpage to German. Due to cliapp
not supporting other languages than English yet, the manual page lacks
option descriptions.

Version 1.11, released 2015-07-02

* The 1.10 release failed to correctly include the Green Albatross code, due
to a missing line in ‘setup.py‘. This has been fixed.

Version 1.10, released 2015-07-01

Major bug fixes:

* Lars Wirzenius fixed the ‘obnam backup‘ command to lock the whole
repository, the same way as ‘obnam forget‘ does, when it removes
checkpoint generations. This means that during checkpoint removal, no
other client can make a backup, which is unfortunate. To avoid that, set
‘leave-checkpoints = yes‘ in the configuration. That will prevent ‘obnam
backup‘ from removing checkpoints.

Minor new features:

* Lars Wirzenius added the ‘obnam list-formats‘ command to list all
repository formats.

* The default value for the ‘upload-queue-size‘ setting is now 1024, chosen
based on some benchmarking made by Lars Wirzenius to balance speed and
memory use.

* An EXPERIMENTAL new repository format, ‘green-albatross‘, as been
introduced. It is not ready for actual use, and is only added so that its code
doesn’t diverge far from the main line of development.

* Teemu Hukkanen reported that the Synology NAS device returns EACCES
instead of ENOENT when user tries to remove a non-existent file. Obnam
now copes with either error code.

Minor fixes:

* ‘python setup.py build‘ no longer formats the manual page into plain text.
This is now done in ‘python setup.py docs‘ instead. The latter is an optional
build step, and probably only works on Debian.

97

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* ‘obnam restore –to=DIR‘ now requires that the directory ‘DIR‘ either
doesn’t exist, or it is empty when the restore starts. This is to prevent users
from restore on top of a running system.

Version 1.9, released 2015-03-22

New features:

* James Vasile changed Obnam so it can backup an individual file, instead
of an entire directory.

* James Vasile added the ‘–include‘ option to Obnam, allowing one to
include files that would otherwise be excluded (see ‘–exclude‘).

* Carlo Teubner changed ‘obnam fsck‘ to remove unused chunks, if the ‘–
fsck-fix‘ or ‘–fsck-rm-unused‘ settings are used. He also made it not check
for unused chunks when it’s useless to do so, because of various ‘–fsck-skip‘
settings are used.

* A start of a French translation of the manual by pedrito2.

* Ian Cambell provided a new Obnam command, ‘obnam kdirstat‘, which
makes the KDE ‘k4dirstat‘ utility be able to show graphically which parts of
a backup generation use most space.

* Lars Wirzenius added the ‘simple‘ repository format, which is for
demonstration only. It is much too simplistic to be used for real.

Minor changes:

* The manual page and ‘obnam –help‘ are now clearer that the ‘–root‘
setting and command line arguments to ‘obnam backup‘ can be SFTP URLs.
Thanks to Simone Piccardi for reporting the issue.

* David Fries filled in the displayed file permission mode bits.

* Grammar and typo fixes for the obnam.1 manual page, from Jean Jordaan.

* Tom Chiverton suggested a clarification to the manual page for "obnam
mount" to say that each generation is a subdirectory.

* David Fries changed restore to set the group ownership if possible even
when not root. No warnings are issued if the attempt fails.

* Jan Niggemann added a little to the German translation of the Obnam
manual.

* Lars Wirzenius added the path to the error message about a missing chunk
(R43272X).

* Lars Wirzenius made the message at the end of a backup report more
statistics about transfers during the backup.

Bug fixes:

98

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* The Obnam SFTP plugin would loop infinitely if it lost the connection
to the SSH server while creating a temporary file. Itamar Turner-Trauring
provided a fix for this.

* Will Dyson fixed a bug about locking while removing checkpoint
generations.

* Michel Alexandre Salim fixed a Python 2.6 compatibility problem in the
unit tests (use of ‘assertRaises‘ as a context manager).

* Lars Kruse fixed a bug with backing up of overlapping backup roots (e.g.,
/ and /boot), given a test case by Adrien Clerc.

* Thomas Eschenbacher fixed a bug in the format 6 repository code that
would crash when there is an obscure problem and a B-tree code can’t be
found in the tree.

* Tom Chiverton pointed out that the manual page was using "obnam
restore" instead of "obnam mount" in an example for "obnam mount".

* The yarn test suite now runs FUSE tests (‘obnam mount‘) when
‘fusermount‘ is available, rather than checking for membership in the group
‘fuse‘. The latter is a Debianism (fixed in Debian ‘jessie‘).

* Thomas Waldmann noticed that ‘obnam verify‘ didn’t notice that a file had
new data, when the modification time was the same. Obnam now notices
this.

* Thomas Waldmann fixed many typos and minor bugs in the source code.

* Laurence Perkins reported that the Tahoe-LAFS SFTP server returned
some ‘stat‘ fields as None. Fixed to change those to be 0 instead.

* Lars Wirzenius fixed double-downloading of chunks during restores.

Version 1.8, released 2014-05-13

* The error message has been improved for when setting metadata (owner,
permission, and similar) of a restored file fails.

* ‘obnam force-lock‘ now works even when the client running it is not in the
client list.

Security issues:

* Joey Hess found a problem in ‘obnam restore‘: restored files would be
created with quite liberal default permissions, which would be set to the
backed-up permissions later. This could allow a snooper to read files
they shouldn’t be. This has been fixed now by using restrictive default
permissions. A workaround for older versions is to create a directory, set
its permissions to 0700, and restore to a subdirectory of that directory.

Bug fixes:

99

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* ‘–help‘ output no longer shows the default value of any options. It was
shown only for a few options anyway. The proper way to see the current
settings is with the ‘–dump-config‘ option. The bug that was fixed that the
generated manual page no longer contains values that are specific to the
machine doing the generation, such as the hostname as the default value
for ‘–client-name‘. Reported by SanskritFritz.

* When a file was backed up, and later excluded with ‘–exclude‘, Obnam
wouldn’t remove it from the new backups. Now it does. Bug fixed by Anssi
Hannula, though his patch got changed because it no longer applied.

* When restoring extended attributes not in the user namespace (named
like ‘user.foo‘) Obnam now ignores them, instead of trying to set them and
crashing.

* When restoring from a directory that is not a repository, the error message
is now clearer.

* Obnam would previously allow the backup root to be a symbolic link
pointing at a directory. However, this only worked for backups. No other
operations would work and would only see the symbolic link, not the
directory it pointed at. Obnam now gives an error message even for the
backup.

* Obnam no longer excludes files named ‘syslog‘ or ‘none‘, if the setting
‘–log=none‘ or ‘–log=syslog‘ is used.

Version 1.7.4, released 2014-03-31

* The manual is now dual-licensed under GNU GPL v3 or later, and Creative
Commons CC-BY-SA 4.0.

* The 1.7.3 release never went out. Let’s pretend it wasn’t even tagged in git,
and everyone will be happy.

Bug fixes:

* Obnam FUSE got another bug fix from Valery Yundin, to fix a bug I
introduced in 1.7. Reading big files via ‘obnam mount‘ should now work
better.

* Fix count of backed up files. It used to always count directories. Reported
by Alberto Fuentes as Debian bug [742384](https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=742384).

* ‘obnam diff latest‘ would fail due to a programming error. Reported by
Junyx.

Version 1.7.2, released 2014-03-22

Bug fixes:

100

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* Fix another bug in the FUSE plugin’s file reading code, found during the
release process of 1.7.2.

Version 1.7.1, released 2014-03-22

* The ‘dump-repo‘ command now outputs JSON instead of YAML. The
dependency on PyYAML is no longer.

Bug fixes:

* Nemo Inis found a bug in the FUSE plugin (‘obnam mount‘), where
Obnam would return the wrong data when the program reading the file
didn’t read the whole file from the beginning in one read(2) system call.

* The test suite now skips tests that require use of extended attributes in the
‘user‘ namespace. This should allow the test suite to be run on more build
servers run by various distributions.

Version 1.7, released 2014-03-15

WARNING: This release has had fairly large parts of the internals re-written.
There shouldn’t be any externally visible changes due to that, but there is a
chance of bugs. Be careful. Make a copy of your backup repository before
upgrading, if you can.

* The ‘convert5to6‘ subcommand has been removed. If you need to convert
from a pre-1.0 backup repository, and haven’t done so yet, please use
Obnam version 1.6.1 or earlier to do so.

* A new ‘backup-finished‘ hook is provided by the backup plugin, so that
other plugins may do processing at the end of a backup, such as report the
successful backup to a monitoring system. Patch by Enrico Tröger.

* The FUSE plugin can now refresh its view, by having the user read the
‘.pid‘ file. Patch by Valery Yundin.

* New option ‘–always-restore-setuid‘ to always restore setuid/setgid flags
in permissions, even if the restore is not being run by ‘root‘ or the owner of
the files (as recorded in the backup).

* New option ‘–exclude-from‘ allows exclusion patterns to be given in a
separate file (one per line), instead of in a configuration file or on the
command line. Patch by Enrico Tröger.

* A start of a manual for Obnam. This will gain more content with new
releases. The current versions is mainly an edited version of Lars’s blog
posts about backups, plus the Obnam tutorial from the Obnam homepage.
See <http://code.liw.fi/obnam/manual/> for rendered versions (PDF,
HTML).

101

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* Most of the error messages Obnam produces now have a unique error code:
‘ERROR: R0B15DX: Cannot find requested generation for client havelock‘
for example. More error messages will gain error codes in future releases.
The error codes are meant to be easy to search for, and will allow error
messages to be translated in the future.

* The ‘obnam-benchmark‘ program got rewritten so that it’ll do something
useful, but at the same time, it is no longer useful as a general tool. It is now
expected to be run from the Obnam source tree (a cloned git repository), and
isn’t installed anymore.

* The log file now includes information about the transfer overhead to the
repository. Overhead is all the bytes that are not file content data: filenames,
permission bits, extended attributes, etc, plus Obnam internal bookkeeping.

* ‘obnam verify‘ now shows progress both based on number of files and
amount of data.

Bug fixes:

* Obnam now doesn’t remove chunks that are shared between clients.
Previously, this would sometimes happen, because only the first client
would correctly record itself as using a chunk. Now all clients do that.

* Obnam now creates a ‘trustdb.gpg‘ in the temporary GNUPGHOME it
uses during encryption operations. From version 2.0.22 (or thereabouts),
‘gpg‘ insists on having a ‘trustdb.gpg‘ in the GNUPGHOME it uses.

* When backing up a large file, and making a checkpoint generation in the
middle of it, Obnam would say "continuing backup" after the checkpoint
was finished, instead of saying the name of the file. This is now fixed.

Internal changes:

* The ‘obnamlib.Error‘ exception class has been replaced by the
‘obnamlib.ObnamError‘ class, which derives from the new ‘obnam-
lib.StructuredError‘ class. All new exceptions will need to be derived from
‘obnamlib.Error‘ in the future. Also, due to the way ‘StructuredError‘ works,
it is now necessary to create a new exception class for each kind of error.
This gives us unique the error codes mentioned above.

* The old ‘obnamlib.Repository‘ class is gone, and replaced with the
‘obnamlib.RepositoryInterface‘ class, which gets implemented for each
repository format (there is only one, for now, but there will be more).

Version 1.6.1, released 2013-11-30

* Fix Debian package dependencies correctly.

Version 1.6, released 2013-11-30

* Stop logging paramiko exceptions that get converted into another type of
exception by the SFTP plugin in Obnam.

102

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* ‘obnam-benchmark‘ can now use an installed version of larch. Patch by
Lars Kruse.

* Obnam has been ported to FreeBSD by Itamar Turner-Trauring of
HybridCluster.

* Backup progress reporting now reports scanned file data, not just backed
up file data. This will hopefully be less confusing to people.

* The ‘list-keys‘, ‘client-keys‘, and ‘list-toplevels‘ commands now obey a
new option, ‘–key-details‘, to show the usernames attached to each public
key. Patch by Lars Kruse.

* New option ‘–ssh-command‘ to set the command Obnam runs when
invoking ssh. patch by Lars Kruse.

* ‘obnam clients‘ can now be used without being an existing client. Patch by
Itamar Turner-Trauring.

* New option ‘–ssh-host-keys-check‘ to better specify how SSH host keys
should be checked. Patch by Itamar Turner-Trauring.

Bug fixes:

* Fix‘"obnam list-toplevels‘ so it doesn’t give an error when it’s unable to
read the per-client directory of another client, when encryption is used. Fix
by Lars Kruse.

* Fix the encryption plugin to give a better error message when it looks for
client directories but fails to find them. Fix by Lars Kruse.

* ‘obnam list-toplevels‘ got confused when the repository contained extra
files, such as "lock" (left there by a previous, crashed Obnam run). It no
longer does. Fix by Lars Kruse.

* The SFTP plugin now handles another error code (EACCESS) when
writing a file and the directory it should go into not existing. Patch by Armin
GröSSlinger.

* Obnam’s manual page now explains about breaking long logical lines into
multiple physical ones.

* The ‘/ /‘ path prefix in SFTP URLs works again, at least with sufficiently
new versions of Paramiko (1.7.7.1 in Debian wheezy is OK). Reported by
Lars Kruse.

* The Nagios plugin to report errors in a way Nagios expects. Patch by
Martijn Grendelman.

* The Nagios plugin for Obnam now correctly handles the case where a
backup repository for a client exists, but does not have a backup yet. Patch
by Lars Kruse.

* ‘obnam ls‘ now handles trailing slashes in filename arguments. Reported
by Biltong.

103

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* When restoring a backup, Obnam will now continue past errors, instead
of aborting with the first one. Patch by Itamar Turner-Trauring.

Version 1.5, released 2013-08-08

Bug fixes:

* Terminal progress reporting now updated only every 0.1 seconds, instead
of 0.01 seconds, to reduce terminal emulator CPU usage. Reported by Neal
Becker. * Empty exclude patterns are ignored. Previously, a configuration
file line such as "exclude = foo, bar," (note trailing comma) would result in
an empty pattern, which would match everything, and therefore nothing
would be backed up. Reported by Sharon Kimble. * A FUSE plugin to
access (read-only) data from the backup repository has been added. Written
by Valery Yundin.

Version 1.4, released 2013-03-16

* The ‘ls‘ command now takes filenames as (optional) arguments, instead of
a list of generations. Based on patch by Damien Couroussé. * Even more
detailed progress reporting during a backup. * Add –fsck-skip-generations
option to tell fsck to not check any generation metadata. * The default log
level is now INFO, instead of DEBUG. This is to be considered a quantum
leap in the continuing rise of the maturity level of the software. (Actually,
the change is there just to save some disk space and I/O for people who
don’t want to be involved in Obnam development and don’t want to have
massive log files.) * The default sizes for the ‘lru-size‘ and ‘upload-queue-
size‘ settings have been reduced, to reduce the memory impact of Obnam. *
‘obnam restore‘ now reports transfer statistics at the end, similarly to what
‘obnam backup‘ does. Suggested by "S. B.".

Bug fixes:

* If listing extended attributes for a filesystem that does not support
them, Obnam no longer crashes, just silently does not backup extended
attributes. Which aren’t there anyway. * A bug in handling stat lookup
errors was fixed. Reported by Peter Palfrader. Symptom: ‘AttributeError:
’exceptions.OSError’ object has no attribute ’st_ino’‘ in an error message or
log file. * A bug in a restore crashing when failing to set extended attributes
on the restored file was fixed. Reported by "S. B.". * Made it clearer what is
happening when unlocking the repository due to errors, and fixed it so that
a failure to unlock is also an error. Reported by andrewsh. * The dependency
on Larch is now for 1.20121216 or newer, since that is needed for fsck to
work. * The manual page did not document the client name arguments to
the ‘add-key‘ and ‘remove-key‘ subcommands. Reported by Lars Kruse. *
Restoring symlinks as root would fail. Reported and fixed by David Fries. *
Only set ssh user/port if explicitily requested, otherwise let ssh select them.

104

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Reported by Michael Goetze, fixed by David Fries. * Fix problem with old
version of paramiko and chdir. Fixed by Nick Altmann. * Fix problems
with signed vs unsigned values for struct stat fields. Reported by Henning
Verbeek.

Version 1.3, released 2012-12-16

* When creating files in the backup repository, Obnam tries to avoid NFS
synchronisation problems by first writing a temporary file and then creating
a hardlink to the actual filename. This works badly on filesystems that do
not allow hard links, such as VFAT. If creating the hardlink fails, Obnam
now further tries to use the ‘open(2)‘ system call with the ‘O_EXCL‘ flag
to create the target file. This should allow things to work with both NFS
and VFAT. * More detailed progress reporting during the backup. * Manual
page now covers the diff subcommand. Patch by Peter Valdemar Mørch.
* Speed optimisation patch for backing up files in inode numbering order,
from Christophe Vu-Brugier. * A setuid or setgid bit is now not restored if
Obnam is not used by root or the same user as the owner of the restored file.
* Many new settings to control "obnam fsck", mainly to reduce the amount
of checking being done in order to make it faster. However, fsck is has lost
some features (checks), which will be added back in a future release. * More
frequent fsck progress reporting. Some speed optimisations to fsck.

Bug fixes:

* Empty values for extended attributes are now backed up correctly.
Previously they would cause an infinite loop. * Extended attributes without
values are now ignored. This is different from attributes with empty values.
Reported by Vladimir Elisseev. * An empty port number in sftp URLs is
now handled correctly. Found based on report by Anton Shevtsov. * A bad
performance bug when backing up full systems (starting from the filesystem
root directory) has been fixed. At the beginning of each generation, Obnam
removes any directories that are not part of the current backup roots. This
is necessary so that if you change the backup roots, the old stuff doesn’t
hang around forever. However, when the backup root is the filesystem root,
due to the now-fixed bug Obnam would first remove everything, and then
back it up all over again. This "worked", but was quite slow. Thanks to
Nix for reporting the problem. * Obnam now runs GnuPG explicitly with
the "no text mode" setting, to override a "text mode" setting in the user’s
configuration. The files Obnam encrypts need to be treated as binary, not
text files. Reported by Robin Sheat. * A shared B-tree concurrency bug has
been fixed: If another instance of Obnam was modifying a shared B-tree,
Obnam would crash and abort a backup, possibly leaving lock files lying
around. Now a failure to look up a chunk via its checksum is ignored, and
the backup continues. * Bugs in how Python OSError exceptions were being
raises have been fixed. Error messages should now be somewhat clearer.
* Unset or wrongly set variable "full" fixed in "obnam diff". Reported by

105

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

ROGERIO DE CARVALHO BASTOS and patched by Peter Valdemar Mørch.
* Setuid and setgid bits are now restored correctly, when restore happens as
root. Reported by Pavel Kokolemin. * Obnam now complains if no backup
roots have been specified.

Version 1.2, released 2012-10-06

* Added a note to ‘–node-size‘ that it only affects new B-trees. Thanks,
Michael Brown. * New ‘obnam diff‘ subcommand to show differences
(added/removed/modified files) between two generations, by Peter
Valdemar Mørch. * ‘obnam backup‘ now logs the names of files that are
getting backed up at the INFO level rather than DEBUG. * The command
synopsises for backup, restore, and verify commands now make it clearer
that Obnam only accepts directories, not individual files, as arguments. (For
now.) * The output from the ‘show‘ plugin can now be redirected with
the ‘–output=FILE‘ option. Affected subcommands: ‘clients‘, ‘generations‘,
‘genids‘, ‘ls‘, ‘diff‘, ‘nagios-last-backup-age‘.

Bug fixes:

* Notify user of errors during backups. * The SFTP plugin now manages to
deal with repository paths starting with ‘/ /‘ which already exist without
crashing. * Character and block device nodes are now restored correctly.
Thanks to Martin Dummer for the bug report. * The symmteric key for a
toplevel repository directory is re-encrypted when a public key is added or
removed to the toplevel using the ‘add-key‘ or ‘remove-key‘ subcommands.
* Manual page typo fix. Thanks, Steve Kemp.

Version 1.1, released 2012-06-30

* Mark the ‘–small-files-in-btree‘ settings as deprecated. * Obnam now
correctly checks that ‘–repository‘ is set. * Options in ‘–help‘ output are
now grouped in random senseless ways rather than being in one randomly
ordered group. * Manual page clarification for ‘–root‘ and ‘verify‘. Thanks,
Saint Germain. * Remove outdated section from manual page explaining
that there is not format conversion. Thanks, Elrond of Samba-TNG. * Added
missing information about specifying a user in sftp URLs. Thanks, Joey
Hess, for pointing it out. * Manual page clarification on ‘–keep‘ from
Damien Couroussé. * Make ‘obnam forget‘ report which generations it
would remove without ‘–pretend‘. Thanks, Neal Becker, for the suggestion.

Version 1.0, released 2012-06-01

* Fixed bug in finding duplicate files during a backup generation. Thanks to
Saint Germain for reporting the problem. * Changed version number to 1.0.

Version 0.30, released 2012-05-30; a RELEASE CANDIDATE

Only bug fixes, and only in the test suite.

106

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* Fix test case problem when ‘TMPDIR‘lacks‘user_xattr‘.Theextendedattributestestwon′tsucceedinthatcase,andit′spointlesstorunit.∗
Fixtestcaseproblemwhen‘TMPDIR‘ lacks nanosecond timestamps for files.
The test case now ignores such timestamps, making the test pass anyway.
The timestamp accuracy is not important for this test.

Version 0.29, released 2012-05-27; a RELEASE CANDIDATE

* "obnam backup" now writes performance statistics at the end of a
backup run. Search the log for "Backup performance statistics" (INFO
level). * "obnam verify" now continues past the first error. Thanks to
Rafa Gwiazda for requesting this. * Add an ‘obnam-viewprof‘ utility
to translate Python profiling output into human readable text form. *
Bug fix: If a file’s extended attributes have changed in any way, the
change is now backed up. * "obnam fsck" is now a bit faster. *
The shared directories in the repository are now locked only during
updates, allowing more efficient concurrent backups between several
computers. * Obnam now gives a better error message when a backup
root is not a directory. Thanks to Edward Allcutt for reporting the
error (<http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=654211>). *
The output format of "obnam ls" has changed. It now has one line
per file, and includes the full pathname of the file, rather mimicking
the output of "ls -lAR". Thanks to Edward Allcutt for the suggestion
(<http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=655095>). * A few
optimizations to sftp speed. Small files are still slow.

Version 0.28, released 2012-05-10; a BETA release

* ‘force-lock‘ should now remove all locks. * Out-of-space errors in the
repository now terminate the backup process. Previously, Obnam would
continue, ignoring the failure to write. If you make space in the repository
and restart Obnam, it will continue from the previous checkpoint. * The
convert5to6 black box test now works even if run by other people than
liw. * "obnam backup" now uses a single SFTP connection to the backup
repository, rather than opening a new one after each checkpoint generation.
Thanks to weinzwang for reporting the problem. * "obnam verify" now
obeys the ‘–quiet‘ option. * "obnam backup" no longer counts chunks
already in the repository in the uploaded amount of data.

Version 0.27, released 2012-04-30; a BETA release

* The repository format has again changed in an incompatible manner, so
you will need to re-backup everything again. Alternatively, you can try the
new ‘convert5to6‘ subcommand. See the manual page for details. Make
sure you have a copy of the repository before converting, the code is new
and may be buggy. * New option ‘–small-files-in-btree‘ enables Obnam to
store the contents of small files in the per-client B-tree. This is not the default,
at least yet, since it’s impact on real life performance is unknown, but it
should make things go a bit faster for high latency repository connections.

107

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* Some SFTP related speed optimizations. * Data filtering is now strictly
stable and priority-ordered, ensuring that compression always happens
before encryption etc. * Repository metadata is never filtered, so that we can
be sure that in future if when we add backwards-compatibility we can detect
the format without worrying about any other filtering which might occur. *
Forcing of locks is now unconditional and across the entire repository. *
Uses the larch 0.30 read-only mode to fix a bug where opening a B-tree rolls
back changes someone else is making, even if we only use the tree to read
stuff from. * "obnam backup" will now exit with a non-zero exit code if there
were any errors during a backup, and the problematic files were skipped.
Thanks, Peter Palfrader, for reporting the bug. * "obnam forget" is now a bit
faster. * Hash collisions for filenames are now handled.

Version 0.26, released 2012-03-26; a BETA release

* Clients now lock the parts of the backup repository they’re using, while
making any changes, so that multiple clients can work at the same time
without corrupting the repository. * Now depends on a larch 0.28, which
uses journalling to avoid on-disk inconsistencies and corruption during
crashes. * Compression and encryption can now be used together.

Version 0.25, released 2012-02-18; a BETA release

* Log files are now created with permissions that allow only the owner to
read or write them. This fixes a privacy leak. * The ‘nagios-last-backup-age‘
subcommand is useful for setting up Nagios (or similar systems) to check
that backups get run properly. Thanks to Peter Palfrader for the patch. *
Some clarification on how the forget policy works, prompted by questions
from Peter Palfrader. * New settings ‘ssh-known-hosts‘ (for choosing which
file to check for known host keys), ‘strict-ssh-host-keys‘ (for disallowing
unknown host keys), and ‘ssh-key‘ (for choosing which key file to use for
SSH connections) allow better and safer use of ssh. * Checkpoints will now
happen even in the middle of files (but between chunks). * The ‘–pretend‘
option now works for backups as well.

BUG FIXES:

* ‘obnam ls‘ now shows the correct timestamps for generations. Thanks,
Anders Wirzenius.

Version 0.24.1, released 2011-12-24; a BETA release

BUG FIX:

* Fix test case for file timestamps with sub-second resolution. Not all
filesystems have that, so the test case has been changed to accept lack of
sub-second timestamps.

108

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Version 0.24, released 2011-12-18; a BETA release

USER VISIBLE CHANGES

* The way file timestamps (modification and access times) have changed,
to fix inaccuracies introduced by the old way. Times are now stored as two
integers giving full seconds and nanoseconds past the full second, instead of
the weird earlier system that was imposed by Python’s use of floating point
for the timestamps. This causes the repository format version to be bumped,
resulting in a need to start over with an empty repository. * Extended
file attributes are now backed up from and restored to local filesystems.
They are neither backed up, nor restored for live data accessed over SFTP.
* If the ‘–exclude‘ regular expression is wrong, Obnam now gives an error
message and then ignores the regexp, rather than crashing. * There is now a
compression plugin, enabled with ‘–compress-with=gzip‘. * De-duplication
mode can now be chosen by the user: the new ‘–deduplicate‘ setting can
be one of ‘never‘ (fast, but uses more space); ‘verify‘ (slow, but handles
hash collisions gracefully); and ‘fatalist‘ (fast, but lossy, if there is a hash
collision). ‘fatalist‘ is the default mode. * Restores now obey the ‘–dry-
run‘ option. Thanks to Peter Palfreder for the bug report. * New option
‘–verify-randomly‘ allows you to check only a part of the backup, instead
of everything. * Verify now has some progress reporting. * Forget is now
much faster. * Forget now has progress reporting. It is not fast enough to do
without, sorry. * Backup now removes any checkpoint generations it created
during a backup run, if it succeeds without errors.

BUG FIXES:

* Now works with a repository on sshfs. Thanks to Dafydd Harries for
reporting the problem. * Now depends on a newer version of the larch
library, fixing a problem when the Obnam default node size changes and an
existing repository has a different size. * User and group names for sftp live
data are no longer queried from the local system. Instead, they’re marked
as unknown.

Version 0.23, released 2011-10-02; a BETA release

USER VISIBLE CHANGES:

* ‘restore‘ now shows a progress bar. * ‘fsck‘ now has more useful progress
reporting, and does more checking, including the integrity of the contents
of file content. * ‘fsck‘ now also checks the integrity of the B-trees in the
repository, so that it is not necessary to run ‘fsck-larch‘ manually anymore.
This works remotely as well, whereas ‘fsck-larch‘ only worked on B-trees on
the local filesystem. * ‘force-lock‘ now gives a warning if the client does not
exist in the repository. * Subcommands for encryption now give a warning
if encryption key is not given. * The ‘–fsck-fix‘ option will now instruct
‘obnam fsck‘ to try to fix problems found. For this release, it only means
fixing B-tree missing node problems, but more will follow. * The default
sizes have been changed for B-tree nodes (256 KiB) and file contents chunks

109

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

(1 MiB), based on benchmarking. * SFTP protocol use has been optimized,
which should result in some more speed. This also highlights the need to
change obnam so it can do uploads in the background. * If a client does not
exist in the repository, ‘force-lock‘ now gives a warning to the user, rather
than ignoring it silently.

DEVELOPER CHANGES:

* New ‘–sftp-delay=100‘ option can be used to simulate SFTP backups over
networks with long round trip times. * ‘obnam-benchmark‘ can now use
‘–sftp-delay‘ and other changes to make it more useful.

INTERNAL CHANGES:

* Got rid of terminal status plugin. Now, the ‘Application‘ class provides
a ‘ttystatus.TerminalStatus‘ instance instead, in the ‘ts‘ attribute. Other
plugings are supposed to use that for progress reporting and messaging
to the user. * The ‘posix_fadvise‘ system call is used only if available. This
should improve Obnam’s portability a bit.

Version 0.22, released 2011-08-25; a BETA release

USER VISIBLE CHANGES:

* Obnam now reports its current configuration in the log file at startup. This
will hopefully remove one round of "did you use the –foo option?" questions
between developers and bug reporters.

BUG FIXES:

* The repository is now unlocked on exit only if it is still locked. * A wrongly
caught ‘GeneratorExit‘ is now dealt with properly. * Keyboard interrupts are
logged, so they don’t show up as anonymous errors.

CHANGES RELEVANT TO DEVELOPERS ONLY:

* ‘setup.py‘ has been enhanced to work more like the old ‘Makefile‘
did: ‘clean‘ removes more artifacts. Instructions in ‘README‘ have
been updated to point at ‘setup.py‘. * Compiler warning about
‘_XOPEN_SOURCE‘ re-definition fixed. * Tests are now again run during
a Debian package build.

Version 0.21, released 2011-08-23; a BETA release

USER VISIBLE CHANGES:

* Obnam will now unlock the repository if there’s an error during a backup.
For the most part, the ‘force-lock‘ operation should now be unnecessary, but
it’s still there in case it’s useful some day.

BUG FIXES:

110

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* Negative timestamps for files now work. Thanks to Jamil Djadala for
reporting the bug. * The documentation for –checkpoint units fixed. Thanks,
user weinzwang from IRC. * The connections to the repository and live
data filesystem are now properly closed. This makes benchmark read/write
statistics be correct.

Version 0.20.1, released 2011-08-11; a BETA release

BUG FIXES:

* More cases of Unicode strings versus plain strings in filenames over SFTP
fixed. Thanks to Tapani Tarvainen.

Version 0.20, released 2011-08-09; a BETA release

BUG FIXES:

* Non-ASCII filenames over SFTP root now work. (Thanks, Tapani
Tarvainen, for the reproducible bug report.) * The count of files while
making a backup now counts all files found, not just those backed up. The
old behavior was confusing people.

USER VISIBLE CHANGES:

* The output of ‘obnam ls‘ now formats the columns a little prettier, so
that wide values do not cause misalignment. * The error message when
trying to use an encrypted repository without encryption is now better (and
suggests missing encryption being the reason). Thanks, chrysn. * Obnam
now supports backing up of Unix sockets.

Version 0.19, released 2011-08-03; a BETA release

INCOMPATIBILITY CHANGES:

* We now require version 0.21 of the ‘larch‘ library, and this requires
bumping the repository format. This means old backup repositories can’t be
used with this version, and you need to back up everything again. (Please
tell me when this becomes a problem.)

BUG FIXES:

* Found one more place where a file going missing during a backup may
cause a crash. * Typo in error message about on-disk formats fixed. (Thanks,
Tapani Tarvainen.) * The ‘–trace‘ option works again. * ‘fcntl.F_SETFL‘ does
not seem to work on file descriptors for files owned by root that are read-
only to the user running obnam. Worked around by ignoring any problems
with setting the flags. * The funnest bug in this release: if no log file was
specified with ‘–log‘, the current working directory was excluded from the
backup.

USER VISIBLE CHANGES:

111

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* ‘obnam(1)‘ manual page now discusses how configuration files are used.
* The manual page describes problems using sftp to access live data. * The
documentation for ‘–no-act‘ was clarified to say it only works for ‘forget.
(Thanks, Daniel Silverstone.) * ‘obnam-benchmark‘ now has a manual page.
* The backup plugin logs files it excludes, so the user can find out what’s
going on. A confused user is an unhappy user.

INTERNAL STUFF:

* Tracing statements added to various parts of the code, to help debug myste-
rious problems. * All exceptions are derived from ‘obnamlib.AppException‘
or ‘obnamlib.Error‘, and those are derived from ‘cliapp.AppException‘,
so that the user gets nicer error messages than Python stack traces. *
‘blackboxtests‘ is no longer run under fakeroot, because Debian packages are
built under fakeroot, and fakeroot within fakeroot causes trouble. However,
the point of running tests under fakeroot was to make sure certain kinds of
bugs are caught, and since Debian package building runs the tests anyway,
the test coverage is not actually diminished. * The ‘Makefile‘ has new targets
‘fast-check‘ and ‘network-tests‘. The latter runs tests over sftp to localhost.

Version 0.18, released 2011-07-20; a BETA release

* The repository format has again changed in an incompatible manner,
so you will need to re-backup everything again. (If this is a problem,
tell me, and I’ll consider adding backwards compatibility before 1.0 is
released.) * New option ‘–exclude-caches‘ allows automatic exclusion of
cache directories that are marked as such. * Obnam now makes files in
the repository be read-only, so that they’re that much harder to delete by
mistake. * Error message about files that can’t be backed up now mentions
the correct file. * Bugfix: unreadable files and directories no longer cause
the backup to fail. The problems are reported, but the backup continues.
Thanks to Jeff Epler for reporting the bug. * Speed improvement from Jeff
Epler for excluding files from backups. * Various other speed improvements.
* Bugfix: restoring symlinks now works even if the symlink is restored
before its target. Also, the permissions of the symlink (rather than its target)
are now restored correctly. Thanks to Jeff Epler for an exemplary bug report.
* New option ‘–one-file-system‘, from Jeff Epler. * New benchmarking tool
‘obnam-benchmark‘, which is more flexible than the old ‘run-benchmark‘.
* When encrypting/decrypting data with GnuPG, temporary files are no
longer used. * When verifying, ‘.../foo‘ and ‘.../foo/‘ now work the same
way. * New option ‘–symmetric-key-bits‘. * The chunk directory uses
more hierarchy levels, and the way chunks are stored there is now user-
configurable (but you’ll get into trouble if you don’t always use the same
configuration). This should speed things up a bit once the number of chunks
grows very large. * New ‘–chunkids-per-group‘ option, for yet more knobs
to tweak when searching for optimal performance. * Local files are now
opened using ‘O_NOATIME‘ so they can be backed up without affecting
timestamps. * Now uses the ‘cliapp‘ framework for writing command line

112

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

applications. The primary user-visible effect is that the manpage now has
an accurate list of options. * Bugfix: Obnam now again reports VFS I/O
statistics. * Bugfix: Obnam can again back up live data that is accessed
using sftp. Thanks to Tapani Tarvainen for reporting the problem.

Version 0.17, released 2011-05-21; a BETA release

* This is the second BETA release. * The ‘run-benchmark‘ script now works
with the new version of ‘seivot‘. The only benchmark size is one gibibyte,
for now, because Obnam’s too slow to do big ones in reasonable time. As an
aside, the benchmark script got rewritten in Python, so it can be made more
flexible. * Benchmarks are run using encrypted backups. * The kernel buffer
cache is dropped before each obnam run, so the benchmark result is more
realistic (read: slower). * Obnam now rotates its logs. See ‘–log-max‘ and
‘–log-keep‘ options in the manual page. The default location for the log file
is now ‘ /.cache/obnam/obnam.log‘ for people, and ‘/var/log/obnam.log‘
for root. * Obnam now restores sparse files correctly. * There have been some
speed improvements to Obnam. * The ‘–repository‘ option now has the
shorter alias ‘-r‘, since it gets used so often. * ‘obnam force-lock‘ now merely
gives an error message, instead of a Python stack trace, if the repository
does not exist. * Obnam now does not crash if files go missing during a
backup, or can’t be read, or there are other problems with them. It will
report the problem, but then continue as if it had never heard of the file. *
Obnam now supports FIFO files. * Obnam now verifies checksums when
it restores files. * Obnam now stores the checksum for the whole file, not
just the checksum for each chunk of its contents. * Obnam’s own log file is
automatically excluded from backups. * Obnam now stores and restores file
timestamps to full accuracy, instead of truncating them to whole seconds. *
The format of the backup repository has changed in an incompatible way,
and Obnam will now refuse to use an old repository. This means you will
need to use an old version to restore from them, and need to re-backup
everything. Sorry.

Version 0.16, released 2011-07-17; a BETA release

* This is the first BETA release. Obnam should now be feature complete
for real use. Performance is lacking and there are many bugs remaining.
There are no known bugs that would corrupt backed up data, or prevent its
recovery. * Add encryption support. See the manual page for how to use it.

Version 0.15.1, released 2011-03-21; an ALPHA release

* Fix ‘setup.py‘ to not import ‘obnamlib‘, so it works when building under
pbuilder on Debian. Meh.

Version 0.15, released 2011-03-21; an ALPHA release

Bugs fixed:

113

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* Manual page GPL copyright blurb is now properly marked up as a
comment. (Thanks, Joey Hess.) * README now links to python-lru
correctly. (Thanks, Erik Johansson.)

Improvements and other changes:

* Filenames and directories are backed up in sorted order. This should make
it easier to know how far obnam’s gotten. * The location where backups are
stored is now called the repository, instead of the store. Suggested by Joey
Hess. * The repository and the target directory for restored data are now
both created by Obnam, if they don’t already exist. Suggested by Joey Hess.
* Better control of logging, using the new ‘–trace‘ option. * Manual page
now explains making backups a little better. * Default value for ‘–lru-size‘
reduced to 500, for great improvement in memory used, without, it seems,
much decrease in speed. * ‘obnam verify‘ now reports success explicitly.
Based on question from Joey Hess. * ‘obnam verify‘ now accepts both non-
option arguments and the ‘–root‘ option. Suggested by Joey Hess. * ‘obnam
forget‘ now accepts "generation specifiers", not just numeric generation ids.
This means that ‘obnam forget latest‘ works. * I/O statistics are logged more
systematically. * ‘obnam force-lock‘ introduced, to allow breaking a lock
left behind if obnam crashes. But it never does, of course. (Well, except if
there’s a bug, like when a file changes at the wrong moment.) * ‘obnam
genids‘ introduced, to list generation ids without any other data. The old
command ‘obnam generations‘ still works, and lists other info about each
generation as well, but that’s sometimes bad for scripting. * The ‘–dump-
memory-profile‘ option now accepts the value ‘simple‘, for reporting basic
memory use. It has such a small impact that it’s the default. * Obnam
now stores the version of the on-disk format in the repository. This should
allow it to handle repositories created by a different version and act suitably
(hopefully without wiping all your backups).

Version 0.14, released 2010-12-29; an ALPHA release

This version is capable of backing up my laptop’s home directory. It is,
however, still an ALPHA release, and you should not rely on it as your
sole form of backup. It is also slow. But if you’re curious, now would be a
good time to try it out a bit.

Bug fixes:

* ‘COPYING‘ now contains GPL version 3, instead of 2. The code was
licensed under version 3 already. (Thank you Greg Grossmeier.) * The
manual page now uses ‘-‘ and ‘‘ correctly. * ‘obnam forget‘ now actually
removes data that is no longer used by any generation. * When backing up
a new generation, if any of the root directories for the backup got dropped
by the user, they are now also removed from the backup generation. Old
generations obviously still have them. * Only the per-client B-tree forest
should have multiple trees. Now this actually happens, whereas previously
sometimes a very large number of new trees would be created in some
forests. (What’s good for rain forests is not good for saving disk space.) *

114

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

When recursing through directory trees, obnam no longer follows symlinks
to directories. * obnam no longer creates a missing backup store when
backing up to a local disk. It never did this when backing up via sftp. (This
saves me from figuring out which of ‘store‘, ‘stor‘, and ‘sorte‘ is the real
directory.)

New features and stuff:

* ‘blackboxtest‘ has been rewritten to use Python’s ‘unittest‘ framework,
rather than a homegrown bad re-implementation of some of it. * ‘obnam
ls‘ interprets arguments as "genspecs" rather than generation identifiers.
This means ‘obnam ls latest‘ works, and now ‘latest‘ is also the default
if you don’t give any spec. * ‘run-benchmarks‘ now outputs results into
a git checkout of <http://braawi.org/>, an ikiwiki instance hosted by
<http://www.branchable.com/>. The script also puts the results into a
suitable sub-directory, adds a page for the RSS feed of benchmark results,
and updates the report page that summarizes all stored results. * There is
now a 100 GiB benchmark. * Clients are now called clients, instead of hosts.
This terminology should be clearer. * The list of clients now stores a random
integer identifier for each client (unique within the store). The identifier is
used as the name of the per-client B-tree directory, rather than the hostname
of the client. This should prevent a teeny tiny bit of information leakage.
It also makes debugging things much harder. * Various refactorings and
prettifications of the code has happened. For example, several classes
have been split off from the ‘store.py‘ module. This has also resulted in
much better test coverage for those classes. * The per-client trees (formerly
GenerationStore, now ClientMetadataTree) have a more complicated key
now: 4 parts, not 3. This makes it easier to keep separate data about
files, and other data that needs to be stored per-generation, such as what
the generation id is. * ‘find-duplicate-chunks‘, a tool for finding duplicate
chunks of data in a files in a directory tree, was added to the tree. I have
used it to find out if is worthwhile to do duplicate chunk removal at all. (It
is, at least for my data.) Also, it can be used to find good values for chunk
sizes for duplicate detection. * The whole way in which obnam does de-
duplication got re-designed and re-implemented. This is tricky stuff, when
there is more than one client. * ‘SftpFS‘ now uses a hack copied from bzrlib,
to use openssh if it is available, and paramiko only if it is not. This speeds
up sftp data transfers quite a bit. (Where bzrlib supports more than just
openssh, we don’t, since I have no way to test the other stuff. Patches
welcome.) * The way lists of chunk ids are stored for files got changed. Now
we store several ids per list item, which is faster and also saves some space
in the B-tree nodes. Also, it is now possible to append to the list, which
means the caller does not need to first gather a list of all ids. Such a list gets
quite costly when the file is quite big (e.g., in the terabyte size). * New ‘–
dump-memory-profile‘ option was added to help do memory profiling with
meliae or heapy have been added. (Obnam’s memory consumption finally
got annoying enough that I did something about it.)

Removed stuff:

115

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

* The functional specification was badly outdated, and has been removed.
I decided to stop kidding myself that I would keep it up to date. * The
store design document has been removed from the store tree. The online
version at <http://braawi.org/obnam/ondisk/> is the canonical version,
and is actually kept up to date. * The benchmark specification has likewise
been replaced with <http://braawi.org/obnam/benchmarkspec/>.

Version 0.13, released 2010-07-13; an ALPHA release

* Bug fix: a mistake in 0.12 caused checkpoints to happen after each file after
the first checkpoint. Now they happen at the right intervals again. * Upload
speed is now displayed during backups. * Obnam now tells the kernel that
it shouldn’t cache data it reads or writes. It is not likely that data being
backed up is going to be needed again any time soon, so there’s no point in
caching it. (The posix_fadvise call is used for this.) * New –lru-size option
sets size of LRU cache for nodes in memory. The obnam default is large
enough to suit large backups. This uses more memory, but is faster than
btree’s small default of 100.

Version 0.12, released 2010-07-11; an ALPHA release

* NOTE: This version makes incompatible changes to the way data is stored
on-disk. Backups made with older versions are NOT supported. Sorry. *
The run-benchmark script has dropped some smaller sizes (they’re too fast
to be interesting), and adds a 10 GiB test size. * Various speed optimizations.
Most importantly, the way file metadata (results of lstat(2)) are encoded has
changed. This is the incompatible change from above. It’s much faster now,
though. * Preliminary support for using SFTP for the backup store added.
Hasn’t been used much yet, so might well be very buggy.

Version 0.11, released 2010-07-05; an ALPHA release

* Speed optimizations: - chunk identifiers are now sequential, except for
the first one, or when there’s a collision - chunks are now stored in a more
sensible directory hierarchy (instead of one per directory, on average) -
adding files to a directory in the backup store is now faster - only store
a file’s metadata that if it is changed * New –exclude=regexp option to
exclude files based on pathnames * Obnam now makes checkpoints during
backups. If a backup is aborted in the middle and then re-started, it will
continue from the latest checkpoint rather than from the beginning of the
previous backup run. - New option –checkpoint to set the interval between
checkpoints. Defaults to 1 GiB. * Options for various B-tree settings. This is
mostly useful for finding the optimal set of defaults, but may be useful in
other situations for some people. - New options –chunk-group-size, –chunk-
size, –node-size, –upload-queue-size. * Somewhat better progress reporting
during backups.

116

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Version 0.10, released 2010-06-29; an ALPHA release

* Rewritten from scratch. * Old NEWS file entries removed (see bzr if you’re
interested).

117

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Glossary

B
backup a separate safe copy of your live data that will remain intact even if

the primary copy gets destroyed deleted or wrongly modified 10
backup history all the backup generations 11
backup media where a backup repository is stored 11
backup repository the location where your backups are stored 11
backup root a directory that is to be backed up, including all files in it, and

all its subdirectories 18
backup strategy a plan for how to make sure your data is safe even if the

dinosaurs return in space ships to re-take world now that the ice age
is over 11

backup tools 11

C
checkpoint 8
cliapp 45
corruption unwanted modification to (backup) data 25

D
de-duplicate this is a specialised data compression technique for eliminat-

ing duplicate copies of repeating data 23
disaster recovery what you do when something goes wrong 11

F
full backup a fresh backup of all precious live data 14

G
generation a backup in a series of backups of the same live data, to give

historical insight 11

I
incremental backup a backup of any changes (new files, modified files,

deletions) compared to a previous backup generation (either the
previous full backup or the previous incremental backup); usually,
you can’t remove a full backup without removing all of the
incremental backups that depend on it 14

K
118

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Glossary

key identifier 9

L
Live data all the data you have 10

O
off-site a backup repository stored physically far away from the live data 11

P
precious all the data you care about, see also Backup concepts 10
pull backup 21

R
restore retrieving data from a backup repository 10
root a directory that is to be backed up, including all files in it, and all its

subdirectories 18

S
server 19
snapshot backups an alternative to full/incremental backups where every

backup generation is effectively a full backup of all the precious
live data and can be restored and removed as easily as any other
generation 14

ssh-key 19

V
verify making sure a backup system works and that data actually can

be restored from backups and that the backups have not become
corrupted 11

119

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Index of commands

In this index you’ll find the commands which should be prefaced with
"obnam"

Symbols
-

h. .48
r REPOSITORY 48

--
client-name=CLIENT-NAME

49
compress-with=PROGRAM50
critical-age=AGE.50
de-duplicate

default 24
fatalist 24
never . 24
verify . 24

dry-run . 49
generation=GENERATION 50
help . 48
keep=KEEP 51
lock-timeout=TIMEOUT . . . 50
no-act . 49
no-dry-run 50
no-no-act 50
no-pretend 50
no-quiet 49
no-verbose 49
output=FILE 48
pretend . 49
quiet . 49
repository=REPOSITORY . . 48
root=ROOT 50

testing-fail-
matching=REGEXP
50

to=TO . 50
trace=TRACE 49
verbose . 49
verify-randomly=N 51
version . 48
warn-age=AGE 50

B
backup . 8, 17
Backing up

--
checkpoint=SIZE 52
de-duplicate=MODE 52
exclude-caches 52
exclude=EXCLUDE 52
leave-checkpoints 53
no-leave-checkpoints 53
no-one-file-system 52
no-small-files-in-btree 53
small-files-in-btree 53

C
checkpoint . 22
chunk-size . 23
clients . 35
client-name . 34
config . 45

D
dump-config.46

120

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Glossary

E
encrypt-with.38
Encryption

--
encrypt-with=ENCRYPT-

WITH
54

keyid=KEYID 54
no-weak-random 54
symmetric-key-

bits=SYMMETRIC-KEY-
BITS
54

weak-random 54
exclude . 19
exclude-caches19

F
force-lock . 25
forget . 30
forget . 8
fusermount . 28

G
generations .18

I
Integrity checking

--
fsck-fix 55
fsck-ignore-chunks 55
fsck-ignore-client=NAME 55
fsck-last-generation-only . 55
fsck-skip-dirs 56
fsck-skip-files 56
fsck-skip-generations 55
fsck-skip-per-client-b-trees

56
fsck-skip-shared-b-trees . . 56
no-fsck-fix 55
no-fsck-ignore-chunks . . . 55
no-fsck-last-generation-only

55
no-fsck-skip-dirs 56
no-fsck-skip-files 56
no-fsck-skip-generations . 56
no-fsck-skip-per-client-b-

trees
56

no-fsck-skip-shared-b-trees
56

K
keep . 30

L
Logging

--
log-keep=N 57
log-level=LEVEL 57
log-max=SIZE 57
log-mode=MODE 57
log=FILE. 57

ls . 9

M
mount. .27, 33
Mounting with FUSE

--
fuse-opt=FUSE 58
viewmode=MODE 58

N
no-default-config 45

O
one-file-system 19

P
Performance

--
dump-memory-

profile=METHOD
59

memory-dump-
interval=SECONDS
59

Performance tweaking
--

chunk-size=SIZE 60
chunkids-per-group=NUM

61
idpath-bits=IDPATH-BITS60
idpath-depth=IDPATH-

DEPTH
60

idpath-skip=IDPATH-SKIP
60

lru-size=SIZE 60
121

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

Glossary

node-size=SIZE 60
upload-queue-size=SIZE . 60

pretend . 19

R
restore. .9, 28

S
SSH/SFTP

--
no-pure-paramiko 62

no-strict-ssh-hosts-keys . . 62
pure-paramiko 62
ssh-key=FILENAME 62
ssh-known-

hosts=FILENAME
62

strict-ssh-host-keys62

V
verify . 33

122

Version 2016.620– – Document LATEXed – 17th January 2016

[git] • Branch: 1.19 @ 66f7715 • Release: 1.19 (2016-01-17)

General Index

Symbols
∼/.config/obnam/*.conf 44
∼/.obnam.conf 44
/etc/obnam.conf 44
/etc/obnam/*.conf 44

B
Backup

incremental 8
initial . 8
snapshot 14, 26

C
checkpoint . 8

D
de-duplicate 23

E
encryption 9, 13

G
gpg --list-keys 38

I

Incremental backup 8
Initial backup 8

K
k4dirstat . 40

L
license

Creative Commons License 92
GNU General Public License

92

O
Obnam

home page 91
original author 93
support obnam development

93
obnam.conf.7, 21
obnam.log . 7

Q
Quick introduction.7

123

Version 2016.620– – Document LATEXed – 17th January 2016

	Introduction
	This manual

	README FIRST: A quick tour of Obnam
	Configuration
	Initial backup
	Incremental backups
	Multiple clients in one repository
	Removing old generations
	Restoring data
	Using encryption

	You know you should
	Why backup?
	Backup concepts
	Backup strategies
	Backups and security
	Backup storage media considerations

	Installing Obnam
	Debian
	Other systems

	Backing up
	Your first backup
	Your second backup
	Choosing what to backup, and what not to backup
	Storing backups remotely
	URL syntax
	Pull backups
	Configuration files: a quick intro
	When your precious data is very large
	De-duplication
	De-duplication and safety against checksum collisions
	Locking
	Consistency of live data

	Restoring from backups
	Oh no! It's all FUSEd together
	Restoring without FUSE
	An actual example of a restoration
	Practice makes restores painless

	Forgetting old backup generations
	Choosing a schedule for forgetting generations

	Verifying backups
	Sharing a repository between multiple clients
	Using encryption
	You don't admit to being a spy, so isn't encryption unnecessary?
	How Obnam encryption works
	Setting up Obnam to use encryption
	Checking if a repository uses encryption
	Managing encryption keys in a repository

	Other stuff
	k4dirstat cache files

	Case studies
	Troubleshooting
	Turning on full logging
	Reporting problems ("bugs")

	Obnam configuration files and settings
	Where is my configuration?
	Configuration file syntax
	Checking what my configuration is
	Finding out all the configuration settings

	The backup repository internals
	Repository file permissions

	Obnam options
	--version
	-h
	--help
	--output=FILE
	-r REPOSITORY
	--repository=REPOSITORY
	--client-name=CLIENT-NAME
	--trace=TRACE
	--quiet
	--no-quiet
	--verbose
	--no-verbose
	--pretend
	--dry-run
	--no-act
	--no-pretend
	--no-dry-run
	--no-no-act
	--lock-timeout=TIMEOUT
	--compress-with=PROGRAM
	--root=ROOT
	--testing-fail-matching=REGEXP
	--warn-age=AGE
	--critical-age=AGE
	--to=TO
	--generation=GENERATION
	--keep=KEEP
	--verify-randomly=N

	Backing up
	--exclude=EXCLUDE
	--exclude-caches
	--no-exclude-caches
	--one-file-system
	--no-one-file-system
	--checkpoint=SIZE
	--de-duplicate=MODE
	--leave-checkpoints
	--no-leave-checkpoints
	--small-files-in-btree
	--no-small-files-in-btree

	Encryption
	--encrypt-with=ENCRYPT-WITH
	--keyid=KEYID
	--weak-random
	--no-weak-random
	--symmetric-key-bits=SYMMETRIC-KEY-BITS

	Integrity checking (fsck)
	--fsck-fix
	--no-fsck-fix
	--fsck-ignore-chunks
	--no-fsck-ignore-chunks
	--fsck-ignore-client=NAME
	--fsck-last-generation-only
	--no-fsck-last-generation-only
	--fsck-skip-generations
	--no-fsck-skip-generations
	--fsck-skip-dirs
	--no-fsck-skip-dirs
	--fsck-skip-files
	--no-fsck-skip-files
	--fsck-skip-per-client-b-trees
	--no-fsck-skip-per-client-b-trees
	--fsck-skip-shared-b-trees
	--no-fsck-skip-shared-b-trees

	Logging
	--log=FILE
	--log-level=LEVEL
	--log-max=SIZE
	--log-keep=N
	--log-mode=MODE

	Mounting with FUSE
	--viewmode=MODE
	--fuse-opt=FUSE

	Performance
	--dump-memory-profile=METHOD
	--memory-dump-interval=SECONDS

	Performance tweaking
	--node-size=SIZE
	--chunk-size=SIZE
	--upload-queue-size=SIZE
	--lru-size=SIZE
	--idpath-depth=IDPATH-DEPTH
	--idpath-bits=IDPATH-BITS
	--idpath-skip=IDPATH-SKIP
	--chunkids-per-group=NUM

	SSH/SFTP
	--ssh-key=FILENAME
	--strict-ssh-host-keys
	--no-strict-ssh-host-keys
	--ssh-known-hosts=FILENAME
	--pure-paramiko
	--no-pure-paramiko

	Performance tuning
	Introduction
	Measurements
	Discussion
	Running Obnam under the Python profiler

	The inbuilt help
	The help file
	Options:
	Backing up:
	Configuration files and settings:
	Development of Obnam itself:
	Encryption:
	Integrity checking (fsck):
	Logging:
	Mounting with FUSE:
	Peformance:
	Performance tweaking:
	SSH/SFTP:

	The 'man' page
	Making backups
	Verifying backups
	URL syntax
	Generation specifications
	Policy for keeping and removing backup generations
	Using encryption
	Configuration files
	Multiple clients and locking

	OPTIONS
	Backing up
	Configuration files and settings
	Development of Obnam itself
	Encryption
	Integrity checking (fsck)
	Logging
	Mounting with FUSE
	Peformance
	Performance tweaking
	SSH/SFTP
	EXIT STATUS
	ENVIRONMENT
	FILES
	EXAMPLE
	SEE ALSO

	Errors - code and names
	By error code
	By name

	See Also
	Legal stuff
	Supporting Obnam development
	News
	Glossary
	Index of commands
	General Index

